Syamil Mohd Razak, J. Cornelio, Atefeh Jahandideh, B. Jafarpour, Young Cho, Hui-Hai Liu, R. Vaidya
{"title":"整合深度学习和物理模型改进非常规油藏产量预测","authors":"Syamil Mohd Razak, J. Cornelio, Atefeh Jahandideh, B. Jafarpour, Young Cho, Hui-Hai Liu, R. Vaidya","doi":"10.2118/204864-ms","DOIUrl":null,"url":null,"abstract":"\n The physics of fluid flow and transport processes in hydraulically fractured unconventional reservoirs are not well understood. As a result, the predicted production behavior using conventional simulation often does not agree with the observed field performance data. The discrepancy is caused by potential errors in the simulation model and the physical processes that take place in complex fractured rocks subjected to hydraulic fracturing. Additionally, other field data such as well logs and drilling parameters containing important information about reservoir condition and reservoir characteristics are not conveniently integrated into existing simulation models. In this paper, we discuss the development of a deep learning model to learn the errors in simulation-based performance prediction in unconventional reservoirs. Once trained, the model is expected to forecast the performance response of a well by augmenting physics-based predictions with the learned prediction errors from the deep learning model. To learn the discrepancy between simulated and observed production data, a simulation dataset is generated by using formation, completion, and fluid properties as input to an imperfect physics-based simulation model. The difference between the resulting simulated responses and observed field data, together with collected field data (i.e. well logs, drilling parameters), is then used to train a deep learning model to learn the prediction errors of the imperfect physical model. Deep convolutional autoencoder architectures are used to map the simulated and observed production responses into a low-dimensional manifold, where a regression model is trained to learn the mapping between collected field data and the simulated data in the latent space. The proposed method leverages deep learning models to account for prediction errors originating from potentially missing physical phenomena, simulation inputs, and reservoir description. We illustrate our approach using a case study from the Bakken Play in North Dakota.","PeriodicalId":11320,"journal":{"name":"Day 3 Tue, November 30, 2021","volume":"134 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Integrating Deep Learning and Physics-Based Models for Improved Production Prediction in Unconventional Reservoirs\",\"authors\":\"Syamil Mohd Razak, J. Cornelio, Atefeh Jahandideh, B. Jafarpour, Young Cho, Hui-Hai Liu, R. Vaidya\",\"doi\":\"10.2118/204864-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The physics of fluid flow and transport processes in hydraulically fractured unconventional reservoirs are not well understood. As a result, the predicted production behavior using conventional simulation often does not agree with the observed field performance data. The discrepancy is caused by potential errors in the simulation model and the physical processes that take place in complex fractured rocks subjected to hydraulic fracturing. Additionally, other field data such as well logs and drilling parameters containing important information about reservoir condition and reservoir characteristics are not conveniently integrated into existing simulation models. In this paper, we discuss the development of a deep learning model to learn the errors in simulation-based performance prediction in unconventional reservoirs. Once trained, the model is expected to forecast the performance response of a well by augmenting physics-based predictions with the learned prediction errors from the deep learning model. To learn the discrepancy between simulated and observed production data, a simulation dataset is generated by using formation, completion, and fluid properties as input to an imperfect physics-based simulation model. The difference between the resulting simulated responses and observed field data, together with collected field data (i.e. well logs, drilling parameters), is then used to train a deep learning model to learn the prediction errors of the imperfect physical model. Deep convolutional autoencoder architectures are used to map the simulated and observed production responses into a low-dimensional manifold, where a regression model is trained to learn the mapping between collected field data and the simulated data in the latent space. The proposed method leverages deep learning models to account for prediction errors originating from potentially missing physical phenomena, simulation inputs, and reservoir description. We illustrate our approach using a case study from the Bakken Play in North Dakota.\",\"PeriodicalId\":11320,\"journal\":{\"name\":\"Day 3 Tue, November 30, 2021\",\"volume\":\"134 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Tue, November 30, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/204864-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Tue, November 30, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/204864-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Integrating Deep Learning and Physics-Based Models for Improved Production Prediction in Unconventional Reservoirs
The physics of fluid flow and transport processes in hydraulically fractured unconventional reservoirs are not well understood. As a result, the predicted production behavior using conventional simulation often does not agree with the observed field performance data. The discrepancy is caused by potential errors in the simulation model and the physical processes that take place in complex fractured rocks subjected to hydraulic fracturing. Additionally, other field data such as well logs and drilling parameters containing important information about reservoir condition and reservoir characteristics are not conveniently integrated into existing simulation models. In this paper, we discuss the development of a deep learning model to learn the errors in simulation-based performance prediction in unconventional reservoirs. Once trained, the model is expected to forecast the performance response of a well by augmenting physics-based predictions with the learned prediction errors from the deep learning model. To learn the discrepancy between simulated and observed production data, a simulation dataset is generated by using formation, completion, and fluid properties as input to an imperfect physics-based simulation model. The difference between the resulting simulated responses and observed field data, together with collected field data (i.e. well logs, drilling parameters), is then used to train a deep learning model to learn the prediction errors of the imperfect physical model. Deep convolutional autoencoder architectures are used to map the simulated and observed production responses into a low-dimensional manifold, where a regression model is trained to learn the mapping between collected field data and the simulated data in the latent space. The proposed method leverages deep learning models to account for prediction errors originating from potentially missing physical phenomena, simulation inputs, and reservoir description. We illustrate our approach using a case study from the Bakken Play in North Dakota.