载烟熏有机提取物的PLGA纳米颗粒对卵巢癌细胞株A2780的抗癌作用

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Technology Pub Date : 2022-10-10 DOI:10.1080/10667857.2022.2133072
Roya Mahdizadeh, M. Firoozrai, M. Homayouni Tabrizi, S. J. Hoseini
{"title":"载烟熏有机提取物的PLGA纳米颗粒对卵巢癌细胞株A2780的抗癌作用","authors":"Roya Mahdizadeh, M. Firoozrai, M. Homayouni Tabrizi, S. J. Hoseini","doi":"10.1080/10667857.2022.2133072","DOIUrl":null,"url":null,"abstract":"ABSTRACT There are many traditional agents whose combination with new technologies can offer effective therapeutic impacts. Accordingly, the purpose of this study was to evaluate the effects of PLGA nanoparticles (NPs) loaded with anbarnesa smoke organic extract (P-ASOE) against A2780 ovarian cancer cell line. Thus, nanoparticles were synthesised using W1/O/W2 method and characterised by FESEM, DLS and FTIR techniques. Cytotoxicity of P-ASOE on A2780 and healthy (HFF) cells was assessed using MTT assay. Acridine Orange/Propidium Iodide (AO/PI) staining, flow cytometry and expression profiles of P53, TNFα, CAS-3 and CAS-9 genes were recruited to evaluate the effect of P-ASOE on apoptosis of A2780 cells. The antiangiogenic effect of P-ASOE was studied through chorioallantoic membrane (CAM) assay as well as evaluation of VEGF and VEGFR gene expression. The histological effects of P-ASOE on healthy and cancerous tissues of mouse models were investigated. The results showed that the synthesised NPs had dose- and time-dependent cytotoxic effects on A2780 cells but not on HFF cells. In addition, all assays indicated pro-apoptotic effects of P-ASOE, which significantly reduced number and length of blood vessels as well as length and weight of chick embryos. The expression levels of VEGF and VEGFR genes were also significantly decreased under the influence of NPs. According to in vivo examinations, P-ASOE treatment reduced tumour size while having no significant histological effect on healthy tissues. All findings were in favour of the anti-cancer potential of P-ASOE against A2780 cancer cell line.","PeriodicalId":18270,"journal":{"name":"Materials Technology","volume":"73 1","pages":"3140 - 3151"},"PeriodicalIF":2.9000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anti-cancer effects of PLGA nanoparticles loaded with anbarnesa smoke organic extract on A2780 ovarian cancer cell line\",\"authors\":\"Roya Mahdizadeh, M. Firoozrai, M. Homayouni Tabrizi, S. J. Hoseini\",\"doi\":\"10.1080/10667857.2022.2133072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT There are many traditional agents whose combination with new technologies can offer effective therapeutic impacts. Accordingly, the purpose of this study was to evaluate the effects of PLGA nanoparticles (NPs) loaded with anbarnesa smoke organic extract (P-ASOE) against A2780 ovarian cancer cell line. Thus, nanoparticles were synthesised using W1/O/W2 method and characterised by FESEM, DLS and FTIR techniques. Cytotoxicity of P-ASOE on A2780 and healthy (HFF) cells was assessed using MTT assay. Acridine Orange/Propidium Iodide (AO/PI) staining, flow cytometry and expression profiles of P53, TNFα, CAS-3 and CAS-9 genes were recruited to evaluate the effect of P-ASOE on apoptosis of A2780 cells. The antiangiogenic effect of P-ASOE was studied through chorioallantoic membrane (CAM) assay as well as evaluation of VEGF and VEGFR gene expression. The histological effects of P-ASOE on healthy and cancerous tissues of mouse models were investigated. The results showed that the synthesised NPs had dose- and time-dependent cytotoxic effects on A2780 cells but not on HFF cells. In addition, all assays indicated pro-apoptotic effects of P-ASOE, which significantly reduced number and length of blood vessels as well as length and weight of chick embryos. The expression levels of VEGF and VEGFR genes were also significantly decreased under the influence of NPs. According to in vivo examinations, P-ASOE treatment reduced tumour size while having no significant histological effect on healthy tissues. All findings were in favour of the anti-cancer potential of P-ASOE against A2780 cancer cell line.\",\"PeriodicalId\":18270,\"journal\":{\"name\":\"Materials Technology\",\"volume\":\"73 1\",\"pages\":\"3140 - 3151\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/10667857.2022.2133072\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/10667857.2022.2133072","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

许多传统药物与新技术的结合可以产生有效的治疗效果。因此,本研究的目的是评估负载烟熏有机提取物(P-ASOE)的PLGA纳米颗粒(NPs)对卵巢癌细胞系A2780的作用。因此,采用W1/O/W2法合成纳米颗粒,并采用FESEM、DLS和FTIR技术进行表征。采用MTT法评价P-ASOE对A2780和健康(HFF)细胞的细胞毒性。采用吖啶橙/碘化丙啶(AO/PI)染色、流式细胞术及P53、TNFα、CAS-3和CAS-9基因表达谱研究P-ASOE对A2780细胞凋亡的影响。通过绒毛尿囊膜(CAM)测定及VEGF、VEGFR基因表达测定研究P-ASOE的抗血管生成作用。研究了P-ASOE对小鼠健康组织和癌变组织的组织学影响。结果表明,合成的NPs对A2780细胞具有剂量和时间依赖性的细胞毒作用,而对HFF细胞没有作用。结果表明,P-ASOE具有促凋亡作用,可显著减少鸡胚的血管数量和长度,显著减少鸡胚的长度和重量。在NPs的影响下,VEGF和VEGFR基因的表达水平也显著降低。根据体内检查,P-ASOE治疗减少了肿瘤大小,但对健康组织没有明显的组织学影响。这些结果都支持P-ASOE对A2780癌细胞的抗癌潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anti-cancer effects of PLGA nanoparticles loaded with anbarnesa smoke organic extract on A2780 ovarian cancer cell line
ABSTRACT There are many traditional agents whose combination with new technologies can offer effective therapeutic impacts. Accordingly, the purpose of this study was to evaluate the effects of PLGA nanoparticles (NPs) loaded with anbarnesa smoke organic extract (P-ASOE) against A2780 ovarian cancer cell line. Thus, nanoparticles were synthesised using W1/O/W2 method and characterised by FESEM, DLS and FTIR techniques. Cytotoxicity of P-ASOE on A2780 and healthy (HFF) cells was assessed using MTT assay. Acridine Orange/Propidium Iodide (AO/PI) staining, flow cytometry and expression profiles of P53, TNFα, CAS-3 and CAS-9 genes were recruited to evaluate the effect of P-ASOE on apoptosis of A2780 cells. The antiangiogenic effect of P-ASOE was studied through chorioallantoic membrane (CAM) assay as well as evaluation of VEGF and VEGFR gene expression. The histological effects of P-ASOE on healthy and cancerous tissues of mouse models were investigated. The results showed that the synthesised NPs had dose- and time-dependent cytotoxic effects on A2780 cells but not on HFF cells. In addition, all assays indicated pro-apoptotic effects of P-ASOE, which significantly reduced number and length of blood vessels as well as length and weight of chick embryos. The expression levels of VEGF and VEGFR genes were also significantly decreased under the influence of NPs. According to in vivo examinations, P-ASOE treatment reduced tumour size while having no significant histological effect on healthy tissues. All findings were in favour of the anti-cancer potential of P-ASOE against A2780 cancer cell line.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Technology
Materials Technology 工程技术-材料科学:综合
CiteScore
6.00
自引率
9.70%
发文量
105
审稿时长
8.7 months
期刊介绍: Materials Technology: Advanced Performance Materials provides an international medium for the communication of progress in the field of functional materials (advanced materials in which composition, structure and surface are functionalised to confer specific, applications-oriented properties). The focus is on materials for biomedical, electronic, photonic and energy applications. Contributions should address the physical, chemical, or engineering sciences that underpin the design and application of these materials. The scientific and engineering aspects may include processing and structural characterisation from the micro- to nanoscale to achieve specific functionality.
期刊最新文献
Fabrication and development of biogenic selenium nanoparticles incorporated alginate hydrogel wound care material: a pre-clinical study Biopolymer-coated magnesium-alloy-based multi-functional bio-nanocomposite scaffolds Enhancing anticancer efficacy: xovoltib-loaded chitosan-tripolyphosphate nanoparticles for targeted drug delivery against MCF-7 breast cancer cells One Pot Synthesis, characterization, morphology and optical profilometry properties of La-doped and La–Ag-doped cobalt oxide nanoparticles Supercritical hydrothermal synthesis of ultra-fine Cu powders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1