Minh‐Quan Thai, Sy-Tuan Nguyen, Thanh-Sang Nguyen, Phu-Son Mai
{"title":"含不同形状夹杂物的复合材料有效粘弹性的解析解","authors":"Minh‐Quan Thai, Sy-Tuan Nguyen, Thanh-Sang Nguyen, Phu-Son Mai","doi":"10.2298/TAM200806004T","DOIUrl":null,"url":null,"abstract":"This paper aims to model the effect of different shapes of inclusions on the homogenized viscoelastic properties of composite materials made of a viscoelastic matrix and inclusion particles. The viscoelastic behavior of the matrix phase is modeled by the Generalized Maxwell rheology. The effective properties are firstly derived by combining the homogenization theory of elasticity and the correspondence principle. Then, the effective rheological properties in time space are explicitly derived without using the complex inverse Laplace?Carson transformation (LC). Closed-form solutions for the effective bulk and shear rheological viscoelastic properties, the relaxation and creep moduli as well as the Poisson ratio are obtained for the isotropic case with random orientation distribution and different shapes of inclusions: spherical, oblate and elongate inclusions. The developed approach is validated against the exact solutions obtained by the classical inverse LC method. It is observed that the homogenized viscoelastic moduli are highly sensitive to different shapes of inclusions.","PeriodicalId":44059,"journal":{"name":"Theoretical and Applied Mechanics","volume":"107 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical solutions for the effective viscoelastic properties of composite materials with different shapes of inclusions\",\"authors\":\"Minh‐Quan Thai, Sy-Tuan Nguyen, Thanh-Sang Nguyen, Phu-Son Mai\",\"doi\":\"10.2298/TAM200806004T\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to model the effect of different shapes of inclusions on the homogenized viscoelastic properties of composite materials made of a viscoelastic matrix and inclusion particles. The viscoelastic behavior of the matrix phase is modeled by the Generalized Maxwell rheology. The effective properties are firstly derived by combining the homogenization theory of elasticity and the correspondence principle. Then, the effective rheological properties in time space are explicitly derived without using the complex inverse Laplace?Carson transformation (LC). Closed-form solutions for the effective bulk and shear rheological viscoelastic properties, the relaxation and creep moduli as well as the Poisson ratio are obtained for the isotropic case with random orientation distribution and different shapes of inclusions: spherical, oblate and elongate inclusions. The developed approach is validated against the exact solutions obtained by the classical inverse LC method. It is observed that the homogenized viscoelastic moduli are highly sensitive to different shapes of inclusions.\",\"PeriodicalId\":44059,\"journal\":{\"name\":\"Theoretical and Applied Mechanics\",\"volume\":\"107 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/TAM200806004T\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/TAM200806004T","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Analytical solutions for the effective viscoelastic properties of composite materials with different shapes of inclusions
This paper aims to model the effect of different shapes of inclusions on the homogenized viscoelastic properties of composite materials made of a viscoelastic matrix and inclusion particles. The viscoelastic behavior of the matrix phase is modeled by the Generalized Maxwell rheology. The effective properties are firstly derived by combining the homogenization theory of elasticity and the correspondence principle. Then, the effective rheological properties in time space are explicitly derived without using the complex inverse Laplace?Carson transformation (LC). Closed-form solutions for the effective bulk and shear rheological viscoelastic properties, the relaxation and creep moduli as well as the Poisson ratio are obtained for the isotropic case with random orientation distribution and different shapes of inclusions: spherical, oblate and elongate inclusions. The developed approach is validated against the exact solutions obtained by the classical inverse LC method. It is observed that the homogenized viscoelastic moduli are highly sensitive to different shapes of inclusions.
期刊介绍:
Theoretical and Applied Mechanics (TAM) invites submission of original scholarly work in all fields of theoretical and applied mechanics. TAM features selected high quality research articles that represent the broad spectrum of interest in mechanics.