用CWPO工艺处理高盐度废水回用

Yakun Zhuo, Mei Sheng, Xueke Liang, Guomin Cao
{"title":"用CWPO工艺处理高盐度废水回用","authors":"Yakun Zhuo, Mei Sheng, Xueke Liang, Guomin Cao","doi":"10.1515/jaots-2017-0024","DOIUrl":null,"url":null,"abstract":"Abstract A high salinity wastewater from epoxy resin was treated with the catalytic wet peroxide oxidation (CWPO) process, so that it can be reused as the chlor-alkali process feedstock. Both bench and pilot scale trials were conducted out in this research. The effect of oxidant (hydrogen peroxide) and catalyst (ferrous sulfate) dosages, and their dosing methods, pH value, temperature, and reaction time on TOC removal by the CWPO process were evaluated through bench experiment. The obtained optimal reaction conditions for the CWPO process were as following: H2O2 dosage = 0.735 M, Fe2+ dosage = 0.027 M, temperature = 90ºC, pH = 3.0–3.5, and reaction time = 200 min. Multiple additions of oxidant and catalyst significantly enhanced TOC removal compared to adding the same total dosage in one step. In a pilot trail, 735 moles of H2O2 and 27 moles of Fe2+ were continuously added to a 1000 L wastewater over 3 hours while the pH and temperature of the reaction solution were automatically controlled at 3.3 ± 0.5 and 90 ± 2℃, respectively, the wastewater TOC values were reduced to less than 150 mg/L from 2500–2700 mg/L, which satisfies the influent TOC limit (200 mg/L) of the diaphragm electrolytic cell. In addition, both the iron ion and sulfate ion concentrations in the pilot effluent were less than their influent limits of the diaphragm electrolytic cell, thus the treated wastewater had been successfully applied in a chlor-alkali plant for production chlorine and caustic soda.","PeriodicalId":14870,"journal":{"name":"Journal of Advanced Oxidation Technologies","volume":"145 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Treatment of high salinity wastewater using CWPO process for reuse\",\"authors\":\"Yakun Zhuo, Mei Sheng, Xueke Liang, Guomin Cao\",\"doi\":\"10.1515/jaots-2017-0024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A high salinity wastewater from epoxy resin was treated with the catalytic wet peroxide oxidation (CWPO) process, so that it can be reused as the chlor-alkali process feedstock. Both bench and pilot scale trials were conducted out in this research. The effect of oxidant (hydrogen peroxide) and catalyst (ferrous sulfate) dosages, and their dosing methods, pH value, temperature, and reaction time on TOC removal by the CWPO process were evaluated through bench experiment. The obtained optimal reaction conditions for the CWPO process were as following: H2O2 dosage = 0.735 M, Fe2+ dosage = 0.027 M, temperature = 90ºC, pH = 3.0–3.5, and reaction time = 200 min. Multiple additions of oxidant and catalyst significantly enhanced TOC removal compared to adding the same total dosage in one step. In a pilot trail, 735 moles of H2O2 and 27 moles of Fe2+ were continuously added to a 1000 L wastewater over 3 hours while the pH and temperature of the reaction solution were automatically controlled at 3.3 ± 0.5 and 90 ± 2℃, respectively, the wastewater TOC values were reduced to less than 150 mg/L from 2500–2700 mg/L, which satisfies the influent TOC limit (200 mg/L) of the diaphragm electrolytic cell. In addition, both the iron ion and sulfate ion concentrations in the pilot effluent were less than their influent limits of the diaphragm electrolytic cell, thus the treated wastewater had been successfully applied in a chlor-alkali plant for production chlorine and caustic soda.\",\"PeriodicalId\":14870,\"journal\":{\"name\":\"Journal of Advanced Oxidation Technologies\",\"volume\":\"145 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Oxidation Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jaots-2017-0024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Oxidation Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jaots-2017-0024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 5

摘要

摘要采用催化湿式过氧化氧化(CWPO)工艺处理高矿化度环氧树脂废水,使其可作为氯碱工艺的原料回用。本研究进行了台架试验和中试试验。通过台架实验考察了氧化剂(过氧化氢)和催化剂(硫酸亚铁)的投加量、投加方式、pH值、温度和反应时间对CWPO工艺去除TOC的影响。得到的最佳反应条件为:H2O2用量= 0.735 M, Fe2+用量= 0.027 M,温度= 90℃,pH = 3.0 ~ 3.5,反应时间= 200 min。与一次添加相同总用量相比,多次添加氧化剂和催化剂显著提高了TOC的去除率。在中试试验中,将735 mol H2O2和27 mol Fe2+添加到1000 L废水中,在3小时内,自动控制反应溶液pH为3.3±0.5℃,温度为90±2℃,将废水TOC值从2500 ~ 2700 mg/L降至150 mg/L以下,满足隔膜电解槽进水TOC限值(200 mg/L)。此外,中试出水的铁离子和硫酸盐离子浓度均低于隔膜电解槽的进水限值,因此处理后的废水已成功应用于氯碱厂生产氯和烧碱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Treatment of high salinity wastewater using CWPO process for reuse
Abstract A high salinity wastewater from epoxy resin was treated with the catalytic wet peroxide oxidation (CWPO) process, so that it can be reused as the chlor-alkali process feedstock. Both bench and pilot scale trials were conducted out in this research. The effect of oxidant (hydrogen peroxide) and catalyst (ferrous sulfate) dosages, and their dosing methods, pH value, temperature, and reaction time on TOC removal by the CWPO process were evaluated through bench experiment. The obtained optimal reaction conditions for the CWPO process were as following: H2O2 dosage = 0.735 M, Fe2+ dosage = 0.027 M, temperature = 90ºC, pH = 3.0–3.5, and reaction time = 200 min. Multiple additions of oxidant and catalyst significantly enhanced TOC removal compared to adding the same total dosage in one step. In a pilot trail, 735 moles of H2O2 and 27 moles of Fe2+ were continuously added to a 1000 L wastewater over 3 hours while the pH and temperature of the reaction solution were automatically controlled at 3.3 ± 0.5 and 90 ± 2℃, respectively, the wastewater TOC values were reduced to less than 150 mg/L from 2500–2700 mg/L, which satisfies the influent TOC limit (200 mg/L) of the diaphragm electrolytic cell. In addition, both the iron ion and sulfate ion concentrations in the pilot effluent were less than their influent limits of the diaphragm electrolytic cell, thus the treated wastewater had been successfully applied in a chlor-alkali plant for production chlorine and caustic soda.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.88
自引率
0.00%
发文量
0
审稿时长
1 months
期刊介绍: The Journal of advanced oxidation technologies (AOTs) has been providing an international forum that accepts papers describing basic research and practical applications of these technologies. The Journal has been publishing articles in the form of critical reviews and research papers focused on the science and engineering of AOTs for water, air and soil treatment. Due to the enormous progress in the applications of various chemical and bio-oxidation and reduction processes, the scope of the Journal is now expanded to include submission in these areas so that high quality submission from industry would also be considered for publication. Specifically, the Journal is soliciting submission in the following areas (alphabetical order): -Advanced Oxidation Nanotechnologies -Bio-Oxidation and Reduction Processes -Catalytic Oxidation -Chemical Oxidation and Reduction Processes -Electrochemical Oxidation -Electrohydraulic Discharge, Cavitation & Sonolysis -Electron Beam & Gamma Irradiation -New Photocatalytic Materials and processes -Non-Thermal Plasma -Ozone-based AOTs -Photochemical Degradation Processes -Sub- and Supercritical Water Oxidation -TiO2 Photocatalytic Redox Processes -UV- and Solar Light-based AOTs -Water-Energy (and Food) Nexus of AOTs
期刊最新文献
Catalytic Ozonation of Ciprofloxacin over Cerium Oxide Modified SBA-15 and Toxicity Assessment towards E. coli Degradation of C.I. Acid Red 51 and C.I. Acid Blue 74 in Aqueous Solution by Combination of Hydrogen Peroxide, Nanocrystallite Zinc Oxide and Ultrasound Irradiation Degradation of Cyanide using Stabilized S, N-TiO2 Nanoparticles by Visible and Sun Light Environmental Matrix Effects on Degradation Kinetics of Ibuprofen in a UV/ Persulfate System An Overview of Ozone Research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1