Toni Petronaitis, G. Brodie, S. Simpfendorfer, R. Flavel, N. Warwick
{"title":"微波频率范围内稻谷镰刀菌、伪稻谷镰刀菌和焦磷菌感染的介电特性研究","authors":"Toni Petronaitis, G. Brodie, S. Simpfendorfer, R. Flavel, N. Warwick","doi":"10.1080/08327823.2022.2142754","DOIUrl":null,"url":null,"abstract":"Abstract Cereal production in Australia is severely impacted by stubble-borne pathogens which can survive multiple seasons within cereal residues (stubble). Microwave radiation may be able to reduce or eliminate the pathogens, but the energy requirements first need defining. Hence, the dielectric properties of wheat and barley stubble with different pathogen loads were investigated at 10%, 15%, 30% and 100% moisture content using an open-ended coaxial probe in a spectral band covering 915, 2450, and 5800 MHz. A significant increase in dielectric constant and loss factor was observed with increasing stubble moisture. The dielectric constant and loss factor were lower in the crown (basal) section of stubble compared with the stem (20 cm from base), due to differences in density. When stubble moisture was 100%, the loss factor of barley was higher than wheat. Infection of stubble by different pathogens did not affect the dielectric properties. Microwave heating could therefore be an effective method to heat cereal stubble to eradicate a range of cereal pathogens, especially at lower frequencies and high moisture content, at which the loss factor is high. This research serves as a starting point to define requirements for further development of effective microwave radiation treatments under field conditions.","PeriodicalId":16556,"journal":{"name":"Journal of Microwave Power and Electromagnetic Energy","volume":"83 2 1","pages":"219 - 237"},"PeriodicalIF":0.9000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dielectric properties of cereal stubble infected with Bipolaris sorokiniana, Fusarium pseudograminearum and Pyrenophora teres in the microwave frequency range\",\"authors\":\"Toni Petronaitis, G. Brodie, S. Simpfendorfer, R. Flavel, N. Warwick\",\"doi\":\"10.1080/08327823.2022.2142754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Cereal production in Australia is severely impacted by stubble-borne pathogens which can survive multiple seasons within cereal residues (stubble). Microwave radiation may be able to reduce or eliminate the pathogens, but the energy requirements first need defining. Hence, the dielectric properties of wheat and barley stubble with different pathogen loads were investigated at 10%, 15%, 30% and 100% moisture content using an open-ended coaxial probe in a spectral band covering 915, 2450, and 5800 MHz. A significant increase in dielectric constant and loss factor was observed with increasing stubble moisture. The dielectric constant and loss factor were lower in the crown (basal) section of stubble compared with the stem (20 cm from base), due to differences in density. When stubble moisture was 100%, the loss factor of barley was higher than wheat. Infection of stubble by different pathogens did not affect the dielectric properties. Microwave heating could therefore be an effective method to heat cereal stubble to eradicate a range of cereal pathogens, especially at lower frequencies and high moisture content, at which the loss factor is high. This research serves as a starting point to define requirements for further development of effective microwave radiation treatments under field conditions.\",\"PeriodicalId\":16556,\"journal\":{\"name\":\"Journal of Microwave Power and Electromagnetic Energy\",\"volume\":\"83 2 1\",\"pages\":\"219 - 237\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microwave Power and Electromagnetic Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/08327823.2022.2142754\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microwave Power and Electromagnetic Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/08327823.2022.2142754","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Dielectric properties of cereal stubble infected with Bipolaris sorokiniana, Fusarium pseudograminearum and Pyrenophora teres in the microwave frequency range
Abstract Cereal production in Australia is severely impacted by stubble-borne pathogens which can survive multiple seasons within cereal residues (stubble). Microwave radiation may be able to reduce or eliminate the pathogens, but the energy requirements first need defining. Hence, the dielectric properties of wheat and barley stubble with different pathogen loads were investigated at 10%, 15%, 30% and 100% moisture content using an open-ended coaxial probe in a spectral band covering 915, 2450, and 5800 MHz. A significant increase in dielectric constant and loss factor was observed with increasing stubble moisture. The dielectric constant and loss factor were lower in the crown (basal) section of stubble compared with the stem (20 cm from base), due to differences in density. When stubble moisture was 100%, the loss factor of barley was higher than wheat. Infection of stubble by different pathogens did not affect the dielectric properties. Microwave heating could therefore be an effective method to heat cereal stubble to eradicate a range of cereal pathogens, especially at lower frequencies and high moisture content, at which the loss factor is high. This research serves as a starting point to define requirements for further development of effective microwave radiation treatments under field conditions.
期刊介绍:
The Journal of the Microwave Power Energy (JMPEE) is a quarterly publication of the International Microwave Power Institute (IMPI), aimed to be one of the primary sources of the most reliable information in the arts and sciences of microwave and RF technology. JMPEE provides space to engineers and researchers for presenting papers about non-communication applications of microwave and RF, mostly industrial, scientific, medical and instrumentation. Topics include, but are not limited to: applications in materials science and nanotechnology, characterization of biological tissues, food industry applications, green chemistry, health and therapeutic applications, microwave chemistry, microwave processing of materials, soil remediation, and waste processing.