Tan Ya-ping, Jia Xin, Huang Zhengxiang, Cai Youer, Zu Xudong
{"title":"液体参数对射流作用下液体复合材料靶防护性能的影响","authors":"Tan Ya-ping, Jia Xin, Huang Zhengxiang, Cai Youer, Zu Xudong","doi":"10.1115/hvis2019-093","DOIUrl":null,"url":null,"abstract":"\n In order to study the influence of liquid parameters on the protective performance of liquid composite targets (LCT), based on the theory of interaction between the jet and the LCT, three dimensionless numbers - C, G, and V - are obtained by dimensional analysis in this paper. These 3 dimensionless parameters represent the compressibility, inertia, and viscosity of the liquid, respectively. The empirical formula, P/H = 0.346C1.251G−0.7120V0.036, was obtained by fitting experimental data of the static depth of penetration (DOP) experiment which can predict the residual depth of penetration (RDOP) of the jet penetrating the LCT. It turns out that the 2 dimensionless parameters - C and G - which characterize the compressibility and inertia of the liquid, plays a decisive role in the protection performance of the LCT, while the influence of liquid viscosity is small. In addition, according to the research results of this paper, the protective performance of the LCT can be improved by selecting a liquid with high sound velocity, high viscosity, and low density.","PeriodicalId":6596,"journal":{"name":"2019 15th Hypervelocity Impact Symposium","volume":"118 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of Liquid Parameters on Protective Performance of a Liquid Composite Target Subjected to Jet Impact\",\"authors\":\"Tan Ya-ping, Jia Xin, Huang Zhengxiang, Cai Youer, Zu Xudong\",\"doi\":\"10.1115/hvis2019-093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In order to study the influence of liquid parameters on the protective performance of liquid composite targets (LCT), based on the theory of interaction between the jet and the LCT, three dimensionless numbers - C, G, and V - are obtained by dimensional analysis in this paper. These 3 dimensionless parameters represent the compressibility, inertia, and viscosity of the liquid, respectively. The empirical formula, P/H = 0.346C1.251G−0.7120V0.036, was obtained by fitting experimental data of the static depth of penetration (DOP) experiment which can predict the residual depth of penetration (RDOP) of the jet penetrating the LCT. It turns out that the 2 dimensionless parameters - C and G - which characterize the compressibility and inertia of the liquid, plays a decisive role in the protection performance of the LCT, while the influence of liquid viscosity is small. In addition, according to the research results of this paper, the protective performance of the LCT can be improved by selecting a liquid with high sound velocity, high viscosity, and low density.\",\"PeriodicalId\":6596,\"journal\":{\"name\":\"2019 15th Hypervelocity Impact Symposium\",\"volume\":\"118 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 15th Hypervelocity Impact Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/hvis2019-093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th Hypervelocity Impact Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/hvis2019-093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Liquid Parameters on Protective Performance of a Liquid Composite Target Subjected to Jet Impact
In order to study the influence of liquid parameters on the protective performance of liquid composite targets (LCT), based on the theory of interaction between the jet and the LCT, three dimensionless numbers - C, G, and V - are obtained by dimensional analysis in this paper. These 3 dimensionless parameters represent the compressibility, inertia, and viscosity of the liquid, respectively. The empirical formula, P/H = 0.346C1.251G−0.7120V0.036, was obtained by fitting experimental data of the static depth of penetration (DOP) experiment which can predict the residual depth of penetration (RDOP) of the jet penetrating the LCT. It turns out that the 2 dimensionless parameters - C and G - which characterize the compressibility and inertia of the liquid, plays a decisive role in the protection performance of the LCT, while the influence of liquid viscosity is small. In addition, according to the research results of this paper, the protective performance of the LCT can be improved by selecting a liquid with high sound velocity, high viscosity, and low density.