利用部分同态加密技术确保支持联合学习的 NWDAF 架构的安全

Changshi Zhou;Nirwan Ansari
{"title":"利用部分同态加密技术确保支持联合学习的 NWDAF 架构的安全","authors":"Changshi Zhou;Nirwan Ansari","doi":"10.1109/LNET.2023.3294497","DOIUrl":null,"url":null,"abstract":"Network data analytics function (NWDAF), introduced to provision data analytics and machine learning model training in the 5G core network, is expected to be an essential functional entity and play a significant role in the emerging AI-native 6G wireless network. However, refining the NWDAF architecture to support machine learning (ML) model sharing among multiple NWDAFs with distributed data sources and different privacy constraints remains a major challenge. To address this challenge, we propose a federated learning enabled NWDAF architecture with Partial Homomorphic Encryption to secure ML model sharing with privacy preserving. Simulation results demonstrate the feasibility of our proposed architecture.","PeriodicalId":100628,"journal":{"name":"IEEE Networking Letters","volume":"5 4","pages":"299-303"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Securing Federated Learning Enabled NWDAF Architecture With Partial Homomorphic Encryption\",\"authors\":\"Changshi Zhou;Nirwan Ansari\",\"doi\":\"10.1109/LNET.2023.3294497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network data analytics function (NWDAF), introduced to provision data analytics and machine learning model training in the 5G core network, is expected to be an essential functional entity and play a significant role in the emerging AI-native 6G wireless network. However, refining the NWDAF architecture to support machine learning (ML) model sharing among multiple NWDAFs with distributed data sources and different privacy constraints remains a major challenge. To address this challenge, we propose a federated learning enabled NWDAF architecture with Partial Homomorphic Encryption to secure ML model sharing with privacy preserving. Simulation results demonstrate the feasibility of our proposed architecture.\",\"PeriodicalId\":100628,\"journal\":{\"name\":\"IEEE Networking Letters\",\"volume\":\"5 4\",\"pages\":\"299-303\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Networking Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10180088/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Networking Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10180088/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为在 5G 核心网络中提供数据分析和机器学习模型训练而引入的网络数据分析功能(NWDAF)有望成为一个基本功能实体,并在新兴的人工智能原生 6G 无线网络中发挥重要作用。然而,改进 NWDAF 架构以支持具有分布式数据源和不同隐私限制的多个 NWDAF 之间的机器学习(ML)模型共享仍然是一项重大挑战。为应对这一挑战,我们提出了一种支持联合学习的 NWDAF 架构,该架构采用部分同态加密技术,可在保护隐私的前提下确保 ML 模型共享的安全性。仿真结果证明了我们提出的架构的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Securing Federated Learning Enabled NWDAF Architecture With Partial Homomorphic Encryption
Network data analytics function (NWDAF), introduced to provision data analytics and machine learning model training in the 5G core network, is expected to be an essential functional entity and play a significant role in the emerging AI-native 6G wireless network. However, refining the NWDAF architecture to support machine learning (ML) model sharing among multiple NWDAFs with distributed data sources and different privacy constraints remains a major challenge. To address this challenge, we propose a federated learning enabled NWDAF architecture with Partial Homomorphic Encryption to secure ML model sharing with privacy preserving. Simulation results demonstrate the feasibility of our proposed architecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents IEEE Networking Letters Author Guidelines IEEE COMMUNICATIONS SOCIETY IEEE Communications Society Optimal Classifier for an ML-Assisted Resource Allocation in Wireless Communications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1