{"title":"基于拉动的发展研究数据集","authors":"Georgios Gousios, A. Zaidman","doi":"10.1145/2597073.2597122","DOIUrl":null,"url":null,"abstract":"Pull requests form a new method for collaborating in distributed software development. To study the pull request distributed development model, we constructed a dataset of almost 900 projects and 350,000 pull requests, including some of the largest users of pull requests on Github. In this paper, we describe how the project selection was done, we analyze the selected features and present a machine learning tool set for the R statistics environment.","PeriodicalId":6621,"journal":{"name":"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)","volume":"254 1","pages":"368-371"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":"{\"title\":\"A dataset for pull-based development research\",\"authors\":\"Georgios Gousios, A. Zaidman\",\"doi\":\"10.1145/2597073.2597122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pull requests form a new method for collaborating in distributed software development. To study the pull request distributed development model, we constructed a dataset of almost 900 projects and 350,000 pull requests, including some of the largest users of pull requests on Github. In this paper, we describe how the project selection was done, we analyze the selected features and present a machine learning tool set for the R statistics environment.\",\"PeriodicalId\":6621,\"journal\":{\"name\":\"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)\",\"volume\":\"254 1\",\"pages\":\"368-371\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"64\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2597073.2597122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2597073.2597122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pull requests form a new method for collaborating in distributed software development. To study the pull request distributed development model, we constructed a dataset of almost 900 projects and 350,000 pull requests, including some of the largest users of pull requests on Github. In this paper, we describe how the project selection was done, we analyze the selected features and present a machine learning tool set for the R statistics environment.