S. Giraldo, Kunal J. Tiwari, Ikram Anefnaf, R. Fonoll, Y. Sánchez, Z. J. Li-Kao, V. Izquierdo‐Roca, A. Safae, Z. Sekkat, A. Pérez‐Rodríguez, E. Saucedo
{"title":"碱掺杂策略对宽禁带Cu2ZnGeSe4薄膜太阳能电池性能的影响","authors":"S. Giraldo, Kunal J. Tiwari, Ikram Anefnaf, R. Fonoll, Y. Sánchez, Z. J. Li-Kao, V. Izquierdo‐Roca, A. Safae, Z. Sekkat, A. Pérez‐Rodríguez, E. Saucedo","doi":"10.1109/PVSC45281.2020.9300888","DOIUrl":null,"url":null,"abstract":"In this work, the effect of different alkali doping strategies in kesterite Cu2ZnGeSe4 absorbers is studied, including the impact on the structural and morphological characteristics of the semiconductor material, and the optoelectronic properties of the solar cell devices. The studied alkali elements include Li, Na, and K, and are introduced by two main approaches: post-deposition treatment (PDT), and pre-absorber synthesis (PAS). This study shows that PDT strategies are more interesting than PAS, and Li as the best alkali candidate for the further improvement of Cu2ZnGeSe4 devices performance.","PeriodicalId":6773,"journal":{"name":"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)","volume":"68 5 Pt 1 1","pages":"0732-0735"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of Alkali Doping Strategies on the Performance of Wide Band Gap Cu2ZnGeSe4 Thin Film Solar Cells\",\"authors\":\"S. Giraldo, Kunal J. Tiwari, Ikram Anefnaf, R. Fonoll, Y. Sánchez, Z. J. Li-Kao, V. Izquierdo‐Roca, A. Safae, Z. Sekkat, A. Pérez‐Rodríguez, E. Saucedo\",\"doi\":\"10.1109/PVSC45281.2020.9300888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, the effect of different alkali doping strategies in kesterite Cu2ZnGeSe4 absorbers is studied, including the impact on the structural and morphological characteristics of the semiconductor material, and the optoelectronic properties of the solar cell devices. The studied alkali elements include Li, Na, and K, and are introduced by two main approaches: post-deposition treatment (PDT), and pre-absorber synthesis (PAS). This study shows that PDT strategies are more interesting than PAS, and Li as the best alkali candidate for the further improvement of Cu2ZnGeSe4 devices performance.\",\"PeriodicalId\":6773,\"journal\":{\"name\":\"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)\",\"volume\":\"68 5 Pt 1 1\",\"pages\":\"0732-0735\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC45281.2020.9300888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC45281.2020.9300888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Alkali Doping Strategies on the Performance of Wide Band Gap Cu2ZnGeSe4 Thin Film Solar Cells
In this work, the effect of different alkali doping strategies in kesterite Cu2ZnGeSe4 absorbers is studied, including the impact on the structural and morphological characteristics of the semiconductor material, and the optoelectronic properties of the solar cell devices. The studied alkali elements include Li, Na, and K, and are introduced by two main approaches: post-deposition treatment (PDT), and pre-absorber synthesis (PAS). This study shows that PDT strategies are more interesting than PAS, and Li as the best alkali candidate for the further improvement of Cu2ZnGeSe4 devices performance.