基于QoS和QoE的云游戏多目标资源分配算法

IF 0.7 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of High Speed Networks Pub Date : 2021-01-01 DOI:10.3233/JHS-210655
Koné Kigninman Désiré, Eya Dhib, N. Tabbane, O. Asseu
{"title":"基于QoS和QoE的云游戏多目标资源分配算法","authors":"Koné Kigninman Désiré, Eya Dhib, N. Tabbane, O. Asseu","doi":"10.3233/JHS-210655","DOIUrl":null,"url":null,"abstract":"Cloud gaming is an innovative model that congregates video games. The user may have different Quality-of-Experience (QoE), which is a term used to measure a user’s level of satisfaction and enjoyment for a particular service. To guarantee general satisfaction for all users with limited cloud resources, it becomes a major issue in the cloud. This paper leverages a game theory in the cloud gaming model with resource optimization to discover optimal solutions to resolve resource allocation. The Rider-based harmony search algorithm (Rider-based HSA), which is the combination of Rider optimization algorithm (ROA) and Harmony search algorithm (HSA), is proposed for resource allocation to improve the cloud computing system’s efficiency. The fitness function is newly devised considering certain QoE parameters, which involves fairness index, Quantified experience of players (QE), and Mean Opinion Score (MOS). The proposed Rider-based HSA showed better performance compared to Potential game-based optimization algorithm, Proactive resource allocation algorithm, QoE-aware resource allocation algorithm, Distributed algorithm, and Yusen Li et al., with maximal fairness of 0.999, maximal MOS of 0.873, and maximal QE of 1.","PeriodicalId":54809,"journal":{"name":"Journal of High Speed Networks","volume":"5 1","pages":"121-138"},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"QoS and QoE aware multi objective resource allocation algorithm for cloud gaming\",\"authors\":\"Koné Kigninman Désiré, Eya Dhib, N. Tabbane, O. Asseu\",\"doi\":\"10.3233/JHS-210655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cloud gaming is an innovative model that congregates video games. The user may have different Quality-of-Experience (QoE), which is a term used to measure a user’s level of satisfaction and enjoyment for a particular service. To guarantee general satisfaction for all users with limited cloud resources, it becomes a major issue in the cloud. This paper leverages a game theory in the cloud gaming model with resource optimization to discover optimal solutions to resolve resource allocation. The Rider-based harmony search algorithm (Rider-based HSA), which is the combination of Rider optimization algorithm (ROA) and Harmony search algorithm (HSA), is proposed for resource allocation to improve the cloud computing system’s efficiency. The fitness function is newly devised considering certain QoE parameters, which involves fairness index, Quantified experience of players (QE), and Mean Opinion Score (MOS). The proposed Rider-based HSA showed better performance compared to Potential game-based optimization algorithm, Proactive resource allocation algorithm, QoE-aware resource allocation algorithm, Distributed algorithm, and Yusen Li et al., with maximal fairness of 0.999, maximal MOS of 0.873, and maximal QE of 1.\",\"PeriodicalId\":54809,\"journal\":{\"name\":\"Journal of High Speed Networks\",\"volume\":\"5 1\",\"pages\":\"121-138\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Speed Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/JHS-210655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Speed Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/JHS-210655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

摘要

云游戏是一种整合电子游戏的创新模式。用户可能有不同的体验质量(QoE),这是一个用于衡量用户对特定服务的满意度和享受程度的术语。在有限的云资源下保证所有用户的总体满意度,这成为了云计算中的一个主要问题。本文利用具有资源优化的云博弈模型中的博弈论,寻找解决资源分配问题的最优解。提出基于骑手的和谐搜索算法(Rider-based harmony search algorithm,简称Rider-based HSA),将骑手优化算法(ROA)和和谐搜索算法(HSA)相结合,用于资源分配,提高云计算系统的效率。考虑公平指数、量化玩家体验(QE)和平均意见得分(MOS)等QoE参数,重新设计了适应度函数。与基于潜在博弈的优化算法、主动资源分配算法、qos感知资源分配算法、分布式算法和李宇森等相比,本文提出的基于骑手的HSA算法表现出更好的性能,最大公平性为0.999,最大MOS为0.873,最大QE为1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
QoS and QoE aware multi objective resource allocation algorithm for cloud gaming
Cloud gaming is an innovative model that congregates video games. The user may have different Quality-of-Experience (QoE), which is a term used to measure a user’s level of satisfaction and enjoyment for a particular service. To guarantee general satisfaction for all users with limited cloud resources, it becomes a major issue in the cloud. This paper leverages a game theory in the cloud gaming model with resource optimization to discover optimal solutions to resolve resource allocation. The Rider-based harmony search algorithm (Rider-based HSA), which is the combination of Rider optimization algorithm (ROA) and Harmony search algorithm (HSA), is proposed for resource allocation to improve the cloud computing system’s efficiency. The fitness function is newly devised considering certain QoE parameters, which involves fairness index, Quantified experience of players (QE), and Mean Opinion Score (MOS). The proposed Rider-based HSA showed better performance compared to Potential game-based optimization algorithm, Proactive resource allocation algorithm, QoE-aware resource allocation algorithm, Distributed algorithm, and Yusen Li et al., with maximal fairness of 0.999, maximal MOS of 0.873, and maximal QE of 1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of High Speed Networks
Journal of High Speed Networks Computer Science-Computer Networks and Communications
CiteScore
1.80
自引率
11.10%
发文量
26
期刊介绍: The Journal of High Speed Networks is an international archival journal, active since 1992, providing a publication vehicle for covering a large number of topics of interest in the high performance networking and communication area. Its audience includes researchers, managers as well as network designers and operators. The main goal will be to provide timely dissemination of information and scientific knowledge. The journal will publish contributed papers on novel research, survey and position papers on topics of current interest, technical notes, and short communications to report progress on long-term projects. Submissions to the Journal will be refereed consistently with the review process of leading technical journals, based on originality, significance, quality, and clarity. The journal will publish papers on a number of topics ranging from design to practical experiences with operational high performance/speed networks.
期刊最新文献
Multitier scalable clustering wireless network design approach using honey bee ratel optimization Transmit antenna selection in M-MIMO system using metaheuristic aided model A comparison study of two implemented fuzzy-based models for decision of logical trust Research on fault detection and remote monitoring system of variable speed constant frequency wind turbine based on Internet of things Efficient dynamic IP datacasting mobility management based on LRS in mobile IP networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1