Xiang Xie, Jianxun Liu, Buqing Cao, Mi Peng, Guosheng Kang, Yiping Wen, K. K. Fletcher
{"title":"基于异构信息网络和生成对抗网络的服务分类方法","authors":"Xiang Xie, Jianxun Liu, Buqing Cao, Mi Peng, Guosheng Kang, Yiping Wen, K. K. Fletcher","doi":"10.4018/ijwsr.319960","DOIUrl":null,"url":null,"abstract":"With the rapid development of service computing and software technologies, it is necessary to correctly and efficiently classify web services to promote their discovery and application. The existing service classification methods based on heterogeneous information networks (HIN) achieve better classification performance. However, such methods use negative sampling to randomly select nodes and do not learn the underlying distribution to obtain a robust representation of the nodes. This paper proposes a web services classification method based on HIN and generative adversarial networks (GAN) named SC-GAN. The authors first construct a HIN using the structural relationships between web services and their attribute information. After obtaining the feature embedding of the services based on meta-path random walks, a relationship-aware GAN model is input for adversarial training to obtain high-quality negative samples for optimizing the embedding. Experimental results on real datasets show that SC-GAN improves classification accuracy significantly over state-of-the-art methods.","PeriodicalId":54936,"journal":{"name":"International Journal of Web Services Research","volume":"205 1","pages":"1-17"},"PeriodicalIF":0.8000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Services Classification Method Based on Heterogeneous Information Networks and Generative Adversarial Networks\",\"authors\":\"Xiang Xie, Jianxun Liu, Buqing Cao, Mi Peng, Guosheng Kang, Yiping Wen, K. K. Fletcher\",\"doi\":\"10.4018/ijwsr.319960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of service computing and software technologies, it is necessary to correctly and efficiently classify web services to promote their discovery and application. The existing service classification methods based on heterogeneous information networks (HIN) achieve better classification performance. However, such methods use negative sampling to randomly select nodes and do not learn the underlying distribution to obtain a robust representation of the nodes. This paper proposes a web services classification method based on HIN and generative adversarial networks (GAN) named SC-GAN. The authors first construct a HIN using the structural relationships between web services and their attribute information. After obtaining the feature embedding of the services based on meta-path random walks, a relationship-aware GAN model is input for adversarial training to obtain high-quality negative samples for optimizing the embedding. Experimental results on real datasets show that SC-GAN improves classification accuracy significantly over state-of-the-art methods.\",\"PeriodicalId\":54936,\"journal\":{\"name\":\"International Journal of Web Services Research\",\"volume\":\"205 1\",\"pages\":\"1-17\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Web Services Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/ijwsr.319960\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Web Services Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijwsr.319960","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A Services Classification Method Based on Heterogeneous Information Networks and Generative Adversarial Networks
With the rapid development of service computing and software technologies, it is necessary to correctly and efficiently classify web services to promote their discovery and application. The existing service classification methods based on heterogeneous information networks (HIN) achieve better classification performance. However, such methods use negative sampling to randomly select nodes and do not learn the underlying distribution to obtain a robust representation of the nodes. This paper proposes a web services classification method based on HIN and generative adversarial networks (GAN) named SC-GAN. The authors first construct a HIN using the structural relationships between web services and their attribute information. After obtaining the feature embedding of the services based on meta-path random walks, a relationship-aware GAN model is input for adversarial training to obtain high-quality negative samples for optimizing the embedding. Experimental results on real datasets show that SC-GAN improves classification accuracy significantly over state-of-the-art methods.
期刊介绍:
The International Journal of Web Services Research (IJWSR) is the first refereed, international publication featuring the latest research findings and industry solutions involving all aspects of Web services technology. This journal covers advancements, standards, and practices of Web services, as well as identifies emerging research topics and defines the future of Web services on grid computing, multimedia, and communication. IJWSR provides an open, formal publication for high quality articles developed by theoreticians, educators, developers, researchers, and practitioners for those desiring to stay abreast of challenges in Web services technology.