{"title":"一种新的基于支持向量机的QoS评价方案","authors":"Jingyao Wang, Heli Liu, Mei Song","doi":"10.1109/ICNC.2011.6022143","DOIUrl":null,"url":null,"abstract":"The quality of service (QoS) is an important factor for networks; guarantee the QoS in network is then very important for the network performance. Anyway, the research on the accurately evaluation on QoS is still lacked. In this paper, we employ the computational learning theory to study this problem and present the QoS evaluation model. Then the QoS evaluation scheme base on support vector machine (SVM) is proposed. Simulation results show that our propose scheme is more effective and improve the performance of the QoS evaluation.","PeriodicalId":87274,"journal":{"name":"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications","volume":"337 1","pages":"724-727"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A novel QoS evaluation scheme based on support vector machine\",\"authors\":\"Jingyao Wang, Heli Liu, Mei Song\",\"doi\":\"10.1109/ICNC.2011.6022143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The quality of service (QoS) is an important factor for networks; guarantee the QoS in network is then very important for the network performance. Anyway, the research on the accurately evaluation on QoS is still lacked. In this paper, we employ the computational learning theory to study this problem and present the QoS evaluation model. Then the QoS evaluation scheme base on support vector machine (SVM) is proposed. Simulation results show that our propose scheme is more effective and improve the performance of the QoS evaluation.\",\"PeriodicalId\":87274,\"journal\":{\"name\":\"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications\",\"volume\":\"337 1\",\"pages\":\"724-727\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2011.6022143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2011.6022143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

服务质量(QoS)是网络的一个重要因素;因此,保证网络中的QoS对网络的性能是非常重要的。然而,对于QoS的准确评价,目前还缺乏研究。本文运用计算学习理论对这一问题进行了研究,提出了QoS评价模型。然后提出了基于支持向量机(SVM)的QoS评价方案。仿真结果表明,该方案更有效,提高了QoS评价的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel QoS evaluation scheme based on support vector machine
The quality of service (QoS) is an important factor for networks; guarantee the QoS in network is then very important for the network performance. Anyway, the research on the accurately evaluation on QoS is still lacked. In this paper, we employ the computational learning theory to study this problem and present the QoS evaluation model. Then the QoS evaluation scheme base on support vector machine (SVM) is proposed. Simulation results show that our propose scheme is more effective and improve the performance of the QoS evaluation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BER and HPA Nonlinearities Compensation for Joint Polar Coded SCMA System over Rayleigh Fading Channels Harmonizing Wearable Biosensor Data Streams to Test Polysubstance Detection. eFCM: An Enhanced Fuzzy C-Means Algorithm for Longitudinal Intervention Data. Automatic Detection of Opioid Intake Using Wearable Biosensor. A New Mining Method to Detect Real Time Substance Use Events from Wearable Biosensor Data Stream.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1