P. Domenichini, F. Parı́s, M. Capeluto, M. Granada, J. George, G. Pasquini, A. Kolton
{"title":"曲率驱动的交流辅助磁畴壁蠕变动力学","authors":"P. Domenichini, F. Parı́s, M. Capeluto, M. Granada, J. George, G. Pasquini, A. Kolton","doi":"10.1103/PhysRevB.103.L220409","DOIUrl":null,"url":null,"abstract":"The dynamics of micrometer-sized magnetic domains in ultra-thin ferromagnetic films is so dramatically slowed down by quenched disorder that the spontaneous elastic tension collapse becomes unobservable at ambient temperature. By magneto-optical imaging we show that a weak zero-bias AC magnetic field can assist such curvature-driven collapse, making the area of a bubble to reduce at a measurable rate, in spite of the negligible effect that the same curvature has on the average creep motion driven by a comparable DC field. An analytical model explains this phenomenon quantitatively.","PeriodicalId":8438,"journal":{"name":"arXiv: Disordered Systems and Neural Networks","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Curvature-driven ac-assisted creep dynamics of magnetic domain walls\",\"authors\":\"P. Domenichini, F. Parı́s, M. Capeluto, M. Granada, J. George, G. Pasquini, A. Kolton\",\"doi\":\"10.1103/PhysRevB.103.L220409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dynamics of micrometer-sized magnetic domains in ultra-thin ferromagnetic films is so dramatically slowed down by quenched disorder that the spontaneous elastic tension collapse becomes unobservable at ambient temperature. By magneto-optical imaging we show that a weak zero-bias AC magnetic field can assist such curvature-driven collapse, making the area of a bubble to reduce at a measurable rate, in spite of the negligible effect that the same curvature has on the average creep motion driven by a comparable DC field. An analytical model explains this phenomenon quantitatively.\",\"PeriodicalId\":8438,\"journal\":{\"name\":\"arXiv: Disordered Systems and Neural Networks\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Disordered Systems and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevB.103.L220409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevB.103.L220409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Curvature-driven ac-assisted creep dynamics of magnetic domain walls
The dynamics of micrometer-sized magnetic domains in ultra-thin ferromagnetic films is so dramatically slowed down by quenched disorder that the spontaneous elastic tension collapse becomes unobservable at ambient temperature. By magneto-optical imaging we show that a weak zero-bias AC magnetic field can assist such curvature-driven collapse, making the area of a bubble to reduce at a measurable rate, in spite of the negligible effect that the same curvature has on the average creep motion driven by a comparable DC field. An analytical model explains this phenomenon quantitatively.