基于标签传播的半监督学习的高光谱图像分类

Usha Patel, Hardik Dave, Vibha Patel
{"title":"基于标签传播的半监督学习的高光谱图像分类","authors":"Usha Patel, Hardik Dave, Vibha Patel","doi":"10.1109/InGARSS48198.2020.9358921","DOIUrl":null,"url":null,"abstract":"Hyperspectral Image generally contains hundreds of spectral bands and thus provides a huge amount of information for a particular scene. Despite this, the classification task for hyperspectral image is considered difficult due to less number of labeled samples available. In recent years, deep learning algorithms have grown as the most significant and highly effective for classification tasks. But these algorithms require a huge amount of labeled data which is not suitable for hyperspectral images as getting labeled data is costly. To mitigate this problem, we can employ semi-supervised learning techniques that can address the issue of less labeled samples for training. In this paper, we have used label propagation technique to improve the performance of the CNN model using semi-supervised learning. By considering this semi-supervised learning strategy, we can obtain comparative performance on hyperspectral data using very less number of labeled samples.","PeriodicalId":6797,"journal":{"name":"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)","volume":"171 1","pages":"205-208"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Hyperspectral image classification using semi-supervised learning with label propagation\",\"authors\":\"Usha Patel, Hardik Dave, Vibha Patel\",\"doi\":\"10.1109/InGARSS48198.2020.9358921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hyperspectral Image generally contains hundreds of spectral bands and thus provides a huge amount of information for a particular scene. Despite this, the classification task for hyperspectral image is considered difficult due to less number of labeled samples available. In recent years, deep learning algorithms have grown as the most significant and highly effective for classification tasks. But these algorithms require a huge amount of labeled data which is not suitable for hyperspectral images as getting labeled data is costly. To mitigate this problem, we can employ semi-supervised learning techniques that can address the issue of less labeled samples for training. In this paper, we have used label propagation technique to improve the performance of the CNN model using semi-supervised learning. By considering this semi-supervised learning strategy, we can obtain comparative performance on hyperspectral data using very less number of labeled samples.\",\"PeriodicalId\":6797,\"journal\":{\"name\":\"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)\",\"volume\":\"171 1\",\"pages\":\"205-208\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/InGARSS48198.2020.9358921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/InGARSS48198.2020.9358921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

高光谱图像通常包含数百个光谱波段,因此可以为特定场景提供大量信息。尽管如此,由于可用的标记样本数量较少,高光谱图像的分类任务被认为是困难的。近年来,深度学习算法已成为分类任务中最重要和最有效的算法。但是这些算法需要大量的标记数据,而这些标记数据的获取成本很高,不适合高光谱图像。为了缓解这个问题,我们可以采用半监督学习技术来解决训练中标记较少的样本的问题。在本文中,我们使用标签传播技术来提高CNN模型的半监督学习性能。通过考虑这种半监督学习策略,我们可以使用很少数量的标记样本获得高光谱数据的比较性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hyperspectral image classification using semi-supervised learning with label propagation
Hyperspectral Image generally contains hundreds of spectral bands and thus provides a huge amount of information for a particular scene. Despite this, the classification task for hyperspectral image is considered difficult due to less number of labeled samples available. In recent years, deep learning algorithms have grown as the most significant and highly effective for classification tasks. But these algorithms require a huge amount of labeled data which is not suitable for hyperspectral images as getting labeled data is costly. To mitigate this problem, we can employ semi-supervised learning techniques that can address the issue of less labeled samples for training. In this paper, we have used label propagation technique to improve the performance of the CNN model using semi-supervised learning. By considering this semi-supervised learning strategy, we can obtain comparative performance on hyperspectral data using very less number of labeled samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
InGARSS 2020 Copyright Page Automatic Road Delineation Using Deep Neural Network Sparse Representation of Injected Details for MRA-Based Pansharpening InGARSS 2020 Reviewers Experimental Analysis of the Hongqi-1 H9 Satellite Imagery for Geometric Positioning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1