协同自适应巡航车辆混合交通流的lighhill - whitham - richards模型

Yanyan Qin, Hao Wang, Daiheng Ni
{"title":"协同自适应巡航车辆混合交通流的lighhill - whitham - richards模型","authors":"Yanyan Qin, Hao Wang, Daiheng Ni","doi":"10.1287/trsc.2021.1057","DOIUrl":null,"url":null,"abstract":"In the future, road traffic will incorporate a random mix of manual vehicles and cooperative adaptive cruise control (CACC) vehicles, where a CACC vehicle will degrade to an adaptive cruise control (ACC) vehicle when vehicle-to-vehicle communications are not available. This paper proposes a generalized framework of the Lighthill-Whitham-Richards (LWR) model for such mixed vehicular flow under different CACC penetration rates. In this approach, the kinematic wave speed propagating through the mixed platoon was theoretically proven to be the slope of mixed fundamental diagram. In addition, the random degradation from CACC to ACC was captured in mathematical expectation for traffic scenarios where the CACC only monitors one vehicle ahead. Three concrete car-following models, the intelligent driver model (IDM) and CACC/ACC models validated by Partners for Advanced Transit and Highways (PATH) program, were selected as examples to investigate the propagation of small perturbations and shock waves. Numerical simulations were also performed based on the selected car-following models. Moreover, the derived mixed LWR model was applied to solve some traffic flow problems. It indicates that the proposed LWR model is able to describe the propagation properties of both small perturbations and shock waves. The mixed LWR model can also be used to solve some practical problems, such as the queue caused by a traffic accident and the impact of a moving bottleneck. More importantly, the proposed generalized framework admits other CACC/ACC/regular car-following models, including those developed from further experiments.","PeriodicalId":23247,"journal":{"name":"Transp. Sci.","volume":"146 1","pages":"883-907"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Lighthill-Whitham-Richards Model for Traffic Flow Mixed with Cooperative Adaptive Cruise Control Vehicles\",\"authors\":\"Yanyan Qin, Hao Wang, Daiheng Ni\",\"doi\":\"10.1287/trsc.2021.1057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the future, road traffic will incorporate a random mix of manual vehicles and cooperative adaptive cruise control (CACC) vehicles, where a CACC vehicle will degrade to an adaptive cruise control (ACC) vehicle when vehicle-to-vehicle communications are not available. This paper proposes a generalized framework of the Lighthill-Whitham-Richards (LWR) model for such mixed vehicular flow under different CACC penetration rates. In this approach, the kinematic wave speed propagating through the mixed platoon was theoretically proven to be the slope of mixed fundamental diagram. In addition, the random degradation from CACC to ACC was captured in mathematical expectation for traffic scenarios where the CACC only monitors one vehicle ahead. Three concrete car-following models, the intelligent driver model (IDM) and CACC/ACC models validated by Partners for Advanced Transit and Highways (PATH) program, were selected as examples to investigate the propagation of small perturbations and shock waves. Numerical simulations were also performed based on the selected car-following models. Moreover, the derived mixed LWR model was applied to solve some traffic flow problems. It indicates that the proposed LWR model is able to describe the propagation properties of both small perturbations and shock waves. The mixed LWR model can also be used to solve some practical problems, such as the queue caused by a traffic accident and the impact of a moving bottleneck. More importantly, the proposed generalized framework admits other CACC/ACC/regular car-following models, including those developed from further experiments.\",\"PeriodicalId\":23247,\"journal\":{\"name\":\"Transp. Sci.\",\"volume\":\"146 1\",\"pages\":\"883-907\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transp. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/trsc.2021.1057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transp. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/trsc.2021.1057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

未来,道路交通将包括手动车辆和协作式自适应巡航控制(CACC)车辆的随机组合,当车辆之间的通信不可用时,CACC车辆将降级为自适应巡航控制(ACC)车辆。本文提出了不同CACC渗透率下的混合车流lighhill - whitham - richards (LWR)模型的广义框架。该方法从理论上证明了通过混合排的运动波速为混合基本图的斜率。此外,从CACC到ACC的随机退化被捕获在交通场景的数学期望中,其中CACC只监视前面的一辆车。以智能驾驶员模型(IDM)和先进交通和公路合作伙伴(PATH)项目验证的CACC/ACC模型为例,研究了小扰动和冲击波的传播。并对选定的车辆跟随模型进行了数值模拟。并将所导出的混合LWR模型应用于求解一些交通流问题。结果表明,所提出的低波比模型能够很好地描述小扰动和激波的传播特性。混合LWR模型还可以用于解决一些实际问题,如交通事故引起的排队和移动瓶颈的影响。更重要的是,本文提出的广义框架允许其他CACC/ACC/常规汽车跟随模型,包括那些从进一步的实验中发展出来的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lighthill-Whitham-Richards Model for Traffic Flow Mixed with Cooperative Adaptive Cruise Control Vehicles
In the future, road traffic will incorporate a random mix of manual vehicles and cooperative adaptive cruise control (CACC) vehicles, where a CACC vehicle will degrade to an adaptive cruise control (ACC) vehicle when vehicle-to-vehicle communications are not available. This paper proposes a generalized framework of the Lighthill-Whitham-Richards (LWR) model for such mixed vehicular flow under different CACC penetration rates. In this approach, the kinematic wave speed propagating through the mixed platoon was theoretically proven to be the slope of mixed fundamental diagram. In addition, the random degradation from CACC to ACC was captured in mathematical expectation for traffic scenarios where the CACC only monitors one vehicle ahead. Three concrete car-following models, the intelligent driver model (IDM) and CACC/ACC models validated by Partners for Advanced Transit and Highways (PATH) program, were selected as examples to investigate the propagation of small perturbations and shock waves. Numerical simulations were also performed based on the selected car-following models. Moreover, the derived mixed LWR model was applied to solve some traffic flow problems. It indicates that the proposed LWR model is able to describe the propagation properties of both small perturbations and shock waves. The mixed LWR model can also be used to solve some practical problems, such as the queue caused by a traffic accident and the impact of a moving bottleneck. More importantly, the proposed generalized framework admits other CACC/ACC/regular car-following models, including those developed from further experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effects of Air Quality on Housing Location: A Predictive Dynamic Continuum User-Optimal Approach Transportation in the Sharing Economy Scheduling Vehicles with Spatial Conflicts Differentiated Pricing of Shared Mobility Systems Considering Network Effects Using COVID-19 Data on Vaccine Shipments and Wastage to Inform Modeling and Decision-Making
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1