Anirudh Paranjothi, Mohammed Atiquzzaman, Mohammad S. Khan
{"title":"F-RouND:基于雾的车辆自组织网络流氓节点检测","authors":"Anirudh Paranjothi, Mohammed Atiquzzaman, Mohammad S. Khan","doi":"10.1109/GLOBECOM42002.2020.9322131","DOIUrl":null,"url":null,"abstract":"Vehicular ad hoc networks (VANETs) facilitate vehicles to broadcast beacon messages to ensure road safety. The rogue nodes in VANETs broadcast malicious information leading to potential hazards, including the collision of vehicles. Previous researchers used either cryptography, trust values, or past vehicle data to detect rogue nodes, but they suffer from high processing delay, overhead, and false-positive rate (FPR). We propose fog-based rogue nodes detection (F-RouND), a fog computing scheme, which dynamically creates a fog utilizing the on-board units (OBUs) of all vehicles in the region for rogue nodes detection. The novelty of F-RouND lies in providing low processing delays and FPR at high vehicle densities. The performance of our F-RouND framework was carried out with simulations using OMNET ++ and SUMO simulators. Results show that F-RouND ensures 45% lower processing delays, 12% lower overhead, and 36% lower FPR at high vehicle densities compared to existing rogue nodes detection schemes.","PeriodicalId":12759,"journal":{"name":"GLOBECOM 2020 - 2020 IEEE Global Communications Conference","volume":"152 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"F-RouND: Fog-based Rogue Nodes Detection in Vehicular Ad hoc Networks\",\"authors\":\"Anirudh Paranjothi, Mohammed Atiquzzaman, Mohammad S. Khan\",\"doi\":\"10.1109/GLOBECOM42002.2020.9322131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vehicular ad hoc networks (VANETs) facilitate vehicles to broadcast beacon messages to ensure road safety. The rogue nodes in VANETs broadcast malicious information leading to potential hazards, including the collision of vehicles. Previous researchers used either cryptography, trust values, or past vehicle data to detect rogue nodes, but they suffer from high processing delay, overhead, and false-positive rate (FPR). We propose fog-based rogue nodes detection (F-RouND), a fog computing scheme, which dynamically creates a fog utilizing the on-board units (OBUs) of all vehicles in the region for rogue nodes detection. The novelty of F-RouND lies in providing low processing delays and FPR at high vehicle densities. The performance of our F-RouND framework was carried out with simulations using OMNET ++ and SUMO simulators. Results show that F-RouND ensures 45% lower processing delays, 12% lower overhead, and 36% lower FPR at high vehicle densities compared to existing rogue nodes detection schemes.\",\"PeriodicalId\":12759,\"journal\":{\"name\":\"GLOBECOM 2020 - 2020 IEEE Global Communications Conference\",\"volume\":\"152 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GLOBECOM 2020 - 2020 IEEE Global Communications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM42002.2020.9322131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBECOM 2020 - 2020 IEEE Global Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM42002.2020.9322131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
F-RouND: Fog-based Rogue Nodes Detection in Vehicular Ad hoc Networks
Vehicular ad hoc networks (VANETs) facilitate vehicles to broadcast beacon messages to ensure road safety. The rogue nodes in VANETs broadcast malicious information leading to potential hazards, including the collision of vehicles. Previous researchers used either cryptography, trust values, or past vehicle data to detect rogue nodes, but they suffer from high processing delay, overhead, and false-positive rate (FPR). We propose fog-based rogue nodes detection (F-RouND), a fog computing scheme, which dynamically creates a fog utilizing the on-board units (OBUs) of all vehicles in the region for rogue nodes detection. The novelty of F-RouND lies in providing low processing delays and FPR at high vehicle densities. The performance of our F-RouND framework was carried out with simulations using OMNET ++ and SUMO simulators. Results show that F-RouND ensures 45% lower processing delays, 12% lower overhead, and 36% lower FPR at high vehicle densities compared to existing rogue nodes detection schemes.