近似图挖掘与标签成本

Pranay Anchuri, Mohammed J. Zaki, Omer Barkol, Shahar Golan, Moshe Shamy
{"title":"近似图挖掘与标签成本","authors":"Pranay Anchuri, Mohammed J. Zaki, Omer Barkol, Shahar Golan, Moshe Shamy","doi":"10.1145/2487575.2487602","DOIUrl":null,"url":null,"abstract":"Many real-world graphs have complex labels on the nodes and edges. Mining only exact patterns yields limited insights, since it may be hard to find exact matches. However, in many domains it is relatively easy to define a cost (or distance) between different labels. Using this information, it becomes possible to mine a much richer set of approximate subgraph patterns, which preserve the topology but allow bounded label mismatches. We present novel and scalable methods to efficiently solve the approximate isomorphism problem. We show that approximate mining yields interesting patterns in several real-world graphs ranging from IT and protein interaction networks to protein structures.","PeriodicalId":20472,"journal":{"name":"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Approximate graph mining with label costs\",\"authors\":\"Pranay Anchuri, Mohammed J. Zaki, Omer Barkol, Shahar Golan, Moshe Shamy\",\"doi\":\"10.1145/2487575.2487602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many real-world graphs have complex labels on the nodes and edges. Mining only exact patterns yields limited insights, since it may be hard to find exact matches. However, in many domains it is relatively easy to define a cost (or distance) between different labels. Using this information, it becomes possible to mine a much richer set of approximate subgraph patterns, which preserve the topology but allow bounded label mismatches. We present novel and scalable methods to efficiently solve the approximate isomorphism problem. We show that approximate mining yields interesting patterns in several real-world graphs ranging from IT and protein interaction networks to protein structures.\",\"PeriodicalId\":20472,\"journal\":{\"name\":\"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2487575.2487602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2487575.2487602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

许多现实世界的图在节点和边上都有复杂的标签。只挖掘精确的模式只能产生有限的见解,因为可能很难找到精确的匹配。然而,在许多领域,定义不同标签之间的成本(或距离)是相对容易的。使用这些信息,可以挖掘更丰富的近似子图模式集,这些模式保留了拓扑结构,但允许有界标签不匹配。我们提出了一种新颖的、可扩展的方法来有效地解决近似同构问题。我们展示了在从IT和蛋白质相互作用网络到蛋白质结构的几个真实世界图中,近似挖掘产生了有趣的模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Approximate graph mining with label costs
Many real-world graphs have complex labels on the nodes and edges. Mining only exact patterns yields limited insights, since it may be hard to find exact matches. However, in many domains it is relatively easy to define a cost (or distance) between different labels. Using this information, it becomes possible to mine a much richer set of approximate subgraph patterns, which preserve the topology but allow bounded label mismatches. We present novel and scalable methods to efficiently solve the approximate isomorphism problem. We show that approximate mining yields interesting patterns in several real-world graphs ranging from IT and protein interaction networks to protein structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A general bootstrap performance diagnostic Flexible and robust co-regularized multi-domain graph clustering Beyond myopic inference in big data pipelines Constrained stochastic gradient descent for large-scale least squares problem Inferring distant-time location in low-sampling-rate trajectories
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1