{"title":"ZnO@Na3PW12O40非均相材料上CO2直接合成碳酸二乙酯的研究","authors":"Meng Zhang","doi":"10.11648/J.SJC.20190706.11","DOIUrl":null,"url":null,"abstract":"At present, the world is facing two major problems: energy crisis and CO2 emission. Diethyl carbonate is an effective gasoline additive which can greatly improve octane number. The route of diethyl carbonate synthesis from CO2 is green and economical technique, which can effectively solve both energy crisis and CO2 emission problems together. However, the design and preparation of catalysts is the core and key to realize the conversion from CO2 to diethyl carbonate. This paper mainly described a novel synthesis of ZnO@Na3PW12O40 heterogeneous material that applied in the direct synthesis of diethyl carbonate from CO2 and ethanol. The special pore and channel structure of Na3PW12O40 was used to maximize the catalytic capacity of ZnO material. The prepared catalysts were fully characterized by means of temperature-programmed desorption (TPD) and X-ray powder diffraction (XRD). The properties of acid-base sites on the surface of ZnO@Na3PW12O40 were measured by temperature-programmed desorption technique. The catalytic performance over ZnO@Na3PW12O40 heterogeneous material was examined on micro-reactor. The experiment results indicated that synthesized novel ZnO@Na3PW12O40 heterogeneous material had large number of acid-base sites and high catalytic activity. This novel ZnO@Na3PW12O40 catalyst had great ability to realize the effective conversion from CO2 to diethyl carbonate. This technology not only improved the utilization rate of energy materials, but also reduced CO2 emissions.","PeriodicalId":21607,"journal":{"name":"Science Journal of Chemistry","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Direct Synthesis of Diethyl Carbonate from CO2 over ZnO@Na3PW12O40 Heterogeneous Material\",\"authors\":\"Meng Zhang\",\"doi\":\"10.11648/J.SJC.20190706.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At present, the world is facing two major problems: energy crisis and CO2 emission. Diethyl carbonate is an effective gasoline additive which can greatly improve octane number. The route of diethyl carbonate synthesis from CO2 is green and economical technique, which can effectively solve both energy crisis and CO2 emission problems together. However, the design and preparation of catalysts is the core and key to realize the conversion from CO2 to diethyl carbonate. This paper mainly described a novel synthesis of ZnO@Na3PW12O40 heterogeneous material that applied in the direct synthesis of diethyl carbonate from CO2 and ethanol. The special pore and channel structure of Na3PW12O40 was used to maximize the catalytic capacity of ZnO material. The prepared catalysts were fully characterized by means of temperature-programmed desorption (TPD) and X-ray powder diffraction (XRD). The properties of acid-base sites on the surface of ZnO@Na3PW12O40 were measured by temperature-programmed desorption technique. The catalytic performance over ZnO@Na3PW12O40 heterogeneous material was examined on micro-reactor. The experiment results indicated that synthesized novel ZnO@Na3PW12O40 heterogeneous material had large number of acid-base sites and high catalytic activity. This novel ZnO@Na3PW12O40 catalyst had great ability to realize the effective conversion from CO2 to diethyl carbonate. This technology not only improved the utilization rate of energy materials, but also reduced CO2 emissions.\",\"PeriodicalId\":21607,\"journal\":{\"name\":\"Science Journal of Chemistry\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Journal of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.SJC.20190706.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.SJC.20190706.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Direct Synthesis of Diethyl Carbonate from CO2 over ZnO@Na3PW12O40 Heterogeneous Material
At present, the world is facing two major problems: energy crisis and CO2 emission. Diethyl carbonate is an effective gasoline additive which can greatly improve octane number. The route of diethyl carbonate synthesis from CO2 is green and economical technique, which can effectively solve both energy crisis and CO2 emission problems together. However, the design and preparation of catalysts is the core and key to realize the conversion from CO2 to diethyl carbonate. This paper mainly described a novel synthesis of ZnO@Na3PW12O40 heterogeneous material that applied in the direct synthesis of diethyl carbonate from CO2 and ethanol. The special pore and channel structure of Na3PW12O40 was used to maximize the catalytic capacity of ZnO material. The prepared catalysts were fully characterized by means of temperature-programmed desorption (TPD) and X-ray powder diffraction (XRD). The properties of acid-base sites on the surface of ZnO@Na3PW12O40 were measured by temperature-programmed desorption technique. The catalytic performance over ZnO@Na3PW12O40 heterogeneous material was examined on micro-reactor. The experiment results indicated that synthesized novel ZnO@Na3PW12O40 heterogeneous material had large number of acid-base sites and high catalytic activity. This novel ZnO@Na3PW12O40 catalyst had great ability to realize the effective conversion from CO2 to diethyl carbonate. This technology not only improved the utilization rate of energy materials, but also reduced CO2 emissions.