混合子空间模型的图像分类

Takashi Takahashi, Takio Kurita
{"title":"混合子空间模型的图像分类","authors":"Takashi Takahashi, Takio Kurita","doi":"10.2197/ipsjtcva.6.93","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel method for image classification using local feature descriptors. The method utilizes linear subspaces of local descriptors for characterizing their distribution and extracting image features. The extracted features are transformed into more discriminative features by the linear discriminant analysis and employed for recognizing their categories. Experimental results demonstrate that this method is competitive with the Fisher kernel method in terms of classification accuracy.","PeriodicalId":38957,"journal":{"name":"IPSJ Transactions on Computer Vision and Applications","volume":"780 1","pages":"93-97"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image Classification Using a Mixture of Subspace Models\",\"authors\":\"Takashi Takahashi, Takio Kurita\",\"doi\":\"10.2197/ipsjtcva.6.93\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a novel method for image classification using local feature descriptors. The method utilizes linear subspaces of local descriptors for characterizing their distribution and extracting image features. The extracted features are transformed into more discriminative features by the linear discriminant analysis and employed for recognizing their categories. Experimental results demonstrate that this method is competitive with the Fisher kernel method in terms of classification accuracy.\",\"PeriodicalId\":38957,\"journal\":{\"name\":\"IPSJ Transactions on Computer Vision and Applications\",\"volume\":\"780 1\",\"pages\":\"93-97\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IPSJ Transactions on Computer Vision and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2197/ipsjtcva.6.93\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSJ Transactions on Computer Vision and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/ipsjtcva.6.93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

介绍了一种基于局部特征描述符的图像分类方法。该方法利用局部描述子的线性子空间来表征其分布并提取图像特征。通过线性判别分析将提取的特征转化为更具判别性的特征,并用于分类识别。实验结果表明,该方法在分类精度上优于Fisher核方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Image Classification Using a Mixture of Subspace Models
This paper introduces a novel method for image classification using local feature descriptors. The method utilizes linear subspaces of local descriptors for characterizing their distribution and extracting image features. The extracted features are transformed into more discriminative features by the linear discriminant analysis and employed for recognizing their categories. Experimental results demonstrate that this method is competitive with the Fisher kernel method in terms of classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IPSJ Transactions on Computer Vision and Applications
IPSJ Transactions on Computer Vision and Applications Computer Science-Computer Vision and Pattern Recognition
自引率
0.00%
发文量
0
期刊最新文献
3D human pose estimation model using location-maps for distorted and disconnected images by a wearable omnidirectional camera Application of evolutionary and swarm optimization in computer vision: a literature survey Pseudo-labelling-aided semantic segmentation on sparsely annotated 3D point clouds Phase disambiguation using spatio-temporally modulated illumination in depth sensing Deep learning-based strategies for the detection and tracking of drones using several cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1