基于人工蜂群算法的概率粗糙集阈值优化

IF 1.3 Q2 MATHEMATICS, APPLIED Fuzzy Information and Engineering Pub Date : 2021-10-02 DOI:10.1080/16168658.2021.2002665
T. Soumya, M. Sabu
{"title":"基于人工蜂群算法的概率粗糙集阈值优化","authors":"T. Soumya, M. Sabu","doi":"10.1080/16168658.2021.2002665","DOIUrl":null,"url":null,"abstract":"The Probabilistic Rough Sets (PRS) theory determines the certainty of an object's inclusion into a class, resulting in the division of the entire data set into three regions under a concept. These regions, namely the positive, negative and boundary regions, are generated using an evaluation function and threshold values. The threshold optimisation and the construction and interpretation of an evaluation function offer various methods in the background. Even though most of the methods in the PRS follow an iterative strategy, they lack a common framework, usually affecting the comparison and overall performance evaluation among these methods. This proposed work aims to minimise the uncertainty in three regions via optimising the thresholds using the Artificial Bee Colony (ABC) algorithm. The ABC algorithm is adapted to generate a common framework that results in different optimal pairs of thresholds with a minimum number of iterations. By considering the probabilistic information about an equivalence class structure, we compare the results obtained from the proposed approach with the state-of-the-art methods like Information-Theoretic Rough Sets, Game-Theoretic Rough sets and Genetic Algorithm-based optimisation. The results reveal that the proposed algorithm outperforms existing techniques and leads to a superior method for threshold optimisation in the PRS.","PeriodicalId":37623,"journal":{"name":"Fuzzy Information and Engineering","volume":"34 1","pages":"522 - 539"},"PeriodicalIF":1.3000,"publicationDate":"2021-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimisation of Thresholds in Probabilistic Rough Sets with Artificial Bee Colony Algorithm\",\"authors\":\"T. Soumya, M. Sabu\",\"doi\":\"10.1080/16168658.2021.2002665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Probabilistic Rough Sets (PRS) theory determines the certainty of an object's inclusion into a class, resulting in the division of the entire data set into three regions under a concept. These regions, namely the positive, negative and boundary regions, are generated using an evaluation function and threshold values. The threshold optimisation and the construction and interpretation of an evaluation function offer various methods in the background. Even though most of the methods in the PRS follow an iterative strategy, they lack a common framework, usually affecting the comparison and overall performance evaluation among these methods. This proposed work aims to minimise the uncertainty in three regions via optimising the thresholds using the Artificial Bee Colony (ABC) algorithm. The ABC algorithm is adapted to generate a common framework that results in different optimal pairs of thresholds with a minimum number of iterations. By considering the probabilistic information about an equivalence class structure, we compare the results obtained from the proposed approach with the state-of-the-art methods like Information-Theoretic Rough Sets, Game-Theoretic Rough sets and Genetic Algorithm-based optimisation. The results reveal that the proposed algorithm outperforms existing techniques and leads to a superior method for threshold optimisation in the PRS.\",\"PeriodicalId\":37623,\"journal\":{\"name\":\"Fuzzy Information and Engineering\",\"volume\":\"34 1\",\"pages\":\"522 - 539\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuzzy Information and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/16168658.2021.2002665\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Information and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/16168658.2021.2002665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

概率粗糙集(PRS)理论确定了一个对象被包含到一个类中的确定性,从而将整个数据集划分为一个概念下的三个区域。这些区域,即正、负和边界区域,是使用评估函数和阈值生成的。阈值优化和评价函数的构造和解释在后台提供了多种方法。尽管PRS中的大多数方法都遵循迭代策略,但它们缺乏共同的框架,通常会影响这些方法之间的比较和总体性能评估。本文提出的工作旨在通过使用人工蜂群(ABC)算法优化阈值来最小化三个区域的不确定性。ABC算法适用于生成一个通用框架,该框架以最少的迭代次数产生不同的最优阈值对。通过考虑等价类结构的概率信息,我们将所提出的方法与信息论粗糙集、博弈论粗糙集和基于遗传算法的优化等最新方法的结果进行了比较。结果表明,所提出的算法优于现有的技术,并导致一个优越的方法阈值优化的PRS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimisation of Thresholds in Probabilistic Rough Sets with Artificial Bee Colony Algorithm
The Probabilistic Rough Sets (PRS) theory determines the certainty of an object's inclusion into a class, resulting in the division of the entire data set into three regions under a concept. These regions, namely the positive, negative and boundary regions, are generated using an evaluation function and threshold values. The threshold optimisation and the construction and interpretation of an evaluation function offer various methods in the background. Even though most of the methods in the PRS follow an iterative strategy, they lack a common framework, usually affecting the comparison and overall performance evaluation among these methods. This proposed work aims to minimise the uncertainty in three regions via optimising the thresholds using the Artificial Bee Colony (ABC) algorithm. The ABC algorithm is adapted to generate a common framework that results in different optimal pairs of thresholds with a minimum number of iterations. By considering the probabilistic information about an equivalence class structure, we compare the results obtained from the proposed approach with the state-of-the-art methods like Information-Theoretic Rough Sets, Game-Theoretic Rough sets and Genetic Algorithm-based optimisation. The results reveal that the proposed algorithm outperforms existing techniques and leads to a superior method for threshold optimisation in the PRS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
13
审稿时长
40 weeks
期刊介绍: Fuzzy Information and Engineering—An International Journal wants to provide a unified communication platform for researchers in a wide area of topics from pure and applied mathematics, computer science, engineering, and other related fields. While also accepting fundamental work, the journal focuses on applications. Research papers, short communications, and reviews are welcome. Technical topics within the scope include: (1) Fuzzy Information a. Fuzzy information theory and information systems b. Fuzzy clustering and classification c. Fuzzy information processing d. Hardware and software co-design e. Fuzzy computer f. Fuzzy database and data mining g. Fuzzy image processing and pattern recognition h. Fuzzy information granulation i. Knowledge acquisition and representation in fuzzy information (2) Fuzzy Sets and Systems a. Fuzzy sets b. Fuzzy analysis c. Fuzzy topology and fuzzy mapping d. Fuzzy equation e. Fuzzy programming and optimal f. Fuzzy probability and statistic g. Fuzzy logic and algebra h. General systems i. Fuzzy socioeconomic system j. Fuzzy decision support system k. Fuzzy expert system (3) Soft Computing a. Soft computing theory and foundation b. Nerve cell algorithms c. Genetic algorithms d. Fuzzy approximation algorithms e. Computing with words and Quantum computation (4) Fuzzy Engineering a. Fuzzy control b. Fuzzy system engineering c. Fuzzy knowledge engineering d. Fuzzy management engineering e. Fuzzy design f. Fuzzy industrial engineering g. Fuzzy system modeling (5) Fuzzy Operations Research [...] (6) Artificial Intelligence [...] (7) Others [...]
期刊最新文献
A Multi-Level Multi-Objective Integer Quadratic Programming Problem under Pentagonal Neutrosophic Environment Certain Concepts in Directed Rough Fuzzy Graphs and Application to Mergers of Companies A Study on Hutchinson-Barnsley Theory in Product Intuitionistic Fuzzy Fractal Space Existence and Uniqueness of Solutions for Fuzzy Boundary Value Problems Under Granular Differentiability Resolution of Fuzzy Relation Equations with Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1