{"title":"压电材料在电疲劳载荷下的失效概率评估模型","authors":"Xianghua Chen, Qun Li, Chunguang Wang","doi":"10.1080/07315171.2022.2122414","DOIUrl":null,"url":null,"abstract":"Abstract The service life of piezoelectric devices is significantly affected by the electric fatigue load. The randomness of loads and nonuniformity of material properties caused by random distribution of internal defects in piezoelectric body will lead to the dispersion of the failure life of piezoelectric devices. Predicting failure probability of piezoelectric materials under electric fatigue load is essential for the reliability and life prediction of piezoelectric structures and devices. In this paper, the initial damage of piezoelectric materials is modeled as a random variable. Based on the methods of probability theory and statistics, the failure probability assessment model of piezoelectric materials under electric fatigue load is proposed. The probability density function of initial damage is obtained by observation and statistics of initial defect area. The failure probability assessment model of piezoelectric materials under electric fatigue load can be obtained by probability theory and integral method. Meanwhile, the failure probability evolution of piezoelectric materials under various electric fatigue loads is considered. The results show that the failure life and dispersion of piezoelectric materials is significantly affected by electric fatigue load, and the variation of failure probability under various electric loads is similar. Based on the proposed failure probability assessment models, the randomness of the electric load and randomly distributed initial defects of materials are considered in the damage evolution and performance prediction of piezoelectric structures, which is an important supplement to the reliability prediction and application of piezoelectric devices.","PeriodicalId":50451,"journal":{"name":"Ferroelectrics Letters Section","volume":"32 1","pages":"85 - 103"},"PeriodicalIF":1.3000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The failure probability assessment model of piezoelectric materials under electric fatigue load\",\"authors\":\"Xianghua Chen, Qun Li, Chunguang Wang\",\"doi\":\"10.1080/07315171.2022.2122414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The service life of piezoelectric devices is significantly affected by the electric fatigue load. The randomness of loads and nonuniformity of material properties caused by random distribution of internal defects in piezoelectric body will lead to the dispersion of the failure life of piezoelectric devices. Predicting failure probability of piezoelectric materials under electric fatigue load is essential for the reliability and life prediction of piezoelectric structures and devices. In this paper, the initial damage of piezoelectric materials is modeled as a random variable. Based on the methods of probability theory and statistics, the failure probability assessment model of piezoelectric materials under electric fatigue load is proposed. The probability density function of initial damage is obtained by observation and statistics of initial defect area. The failure probability assessment model of piezoelectric materials under electric fatigue load can be obtained by probability theory and integral method. Meanwhile, the failure probability evolution of piezoelectric materials under various electric fatigue loads is considered. The results show that the failure life and dispersion of piezoelectric materials is significantly affected by electric fatigue load, and the variation of failure probability under various electric loads is similar. Based on the proposed failure probability assessment models, the randomness of the electric load and randomly distributed initial defects of materials are considered in the damage evolution and performance prediction of piezoelectric structures, which is an important supplement to the reliability prediction and application of piezoelectric devices.\",\"PeriodicalId\":50451,\"journal\":{\"name\":\"Ferroelectrics Letters Section\",\"volume\":\"32 1\",\"pages\":\"85 - 103\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ferroelectrics Letters Section\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1080/07315171.2022.2122414\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ferroelectrics Letters Section","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/07315171.2022.2122414","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
The failure probability assessment model of piezoelectric materials under electric fatigue load
Abstract The service life of piezoelectric devices is significantly affected by the electric fatigue load. The randomness of loads and nonuniformity of material properties caused by random distribution of internal defects in piezoelectric body will lead to the dispersion of the failure life of piezoelectric devices. Predicting failure probability of piezoelectric materials under electric fatigue load is essential for the reliability and life prediction of piezoelectric structures and devices. In this paper, the initial damage of piezoelectric materials is modeled as a random variable. Based on the methods of probability theory and statistics, the failure probability assessment model of piezoelectric materials under electric fatigue load is proposed. The probability density function of initial damage is obtained by observation and statistics of initial defect area. The failure probability assessment model of piezoelectric materials under electric fatigue load can be obtained by probability theory and integral method. Meanwhile, the failure probability evolution of piezoelectric materials under various electric fatigue loads is considered. The results show that the failure life and dispersion of piezoelectric materials is significantly affected by electric fatigue load, and the variation of failure probability under various electric loads is similar. Based on the proposed failure probability assessment models, the randomness of the electric load and randomly distributed initial defects of materials are considered in the damage evolution and performance prediction of piezoelectric structures, which is an important supplement to the reliability prediction and application of piezoelectric devices.
期刊介绍:
Ferroelectrics Letters is a separately published section of the international journal Ferroelectrics. Both sections publish theoretical, experimental and applied papers on ferroelectrics and related materials, including ferroelastics, ferroelectric ferromagnetics, electrooptics, piezoelectrics, pyroelectrics, nonlinear dielectrics, polymers and liquid crystals.
Ferroelectrics Letters permits the rapid publication of important, quality, short original papers on the theory, synthesis, properties and applications of ferroelectrics and related materials.