{"title":"长伽马射线暴中快速旋转黑洞周围吸积盘的自引力效应","authors":"Ishika Palit, A. Janiuk, P. Suková","doi":"10.5506/APhysPolBSupp.13.261","DOIUrl":null,"url":null,"abstract":"We prescribe a method to study the effects of self-gravity of accretion disk around a black hole associated with long Gamma Ray Bursts (GRBs) in an evolving background Kerr metric. This is an extension to our previous work where we presented possible constraints for the final masses and spins of these astrophysical black holes. Incorporating the self-force of the accreting cloud around the black hole is a very important aspect due to the transient nature of the event, in which a huge amount of mass is accreted and changes the fundamental black hole parameters i.e. its mass and spin, during the process. Understanding of the GRBs engine is important because they are possible sources of high-energy particles and gravitational waves as most of the energy released from the dynamical evolution is in the form of gravitational radiation. Here, we describe the analytical framework we developed to employ in our numerical model. The numerical studies are planned for the future work.","PeriodicalId":8437,"journal":{"name":"arXiv: High Energy Astrophysical Phenomena","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Self-gravity of the Accretion Disk Around Rapidly Rotating Black Hole in Long Gamma Ray Bursts\",\"authors\":\"Ishika Palit, A. Janiuk, P. Suková\",\"doi\":\"10.5506/APhysPolBSupp.13.261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prescribe a method to study the effects of self-gravity of accretion disk around a black hole associated with long Gamma Ray Bursts (GRBs) in an evolving background Kerr metric. This is an extension to our previous work where we presented possible constraints for the final masses and spins of these astrophysical black holes. Incorporating the self-force of the accreting cloud around the black hole is a very important aspect due to the transient nature of the event, in which a huge amount of mass is accreted and changes the fundamental black hole parameters i.e. its mass and spin, during the process. Understanding of the GRBs engine is important because they are possible sources of high-energy particles and gravitational waves as most of the energy released from the dynamical evolution is in the form of gravitational radiation. Here, we describe the analytical framework we developed to employ in our numerical model. The numerical studies are planned for the future work.\",\"PeriodicalId\":8437,\"journal\":{\"name\":\"arXiv: High Energy Astrophysical Phenomena\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: High Energy Astrophysical Phenomena\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5506/APhysPolBSupp.13.261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Astrophysical Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5506/APhysPolBSupp.13.261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of Self-gravity of the Accretion Disk Around Rapidly Rotating Black Hole in Long Gamma Ray Bursts
We prescribe a method to study the effects of self-gravity of accretion disk around a black hole associated with long Gamma Ray Bursts (GRBs) in an evolving background Kerr metric. This is an extension to our previous work where we presented possible constraints for the final masses and spins of these astrophysical black holes. Incorporating the self-force of the accreting cloud around the black hole is a very important aspect due to the transient nature of the event, in which a huge amount of mass is accreted and changes the fundamental black hole parameters i.e. its mass and spin, during the process. Understanding of the GRBs engine is important because they are possible sources of high-energy particles and gravitational waves as most of the energy released from the dynamical evolution is in the form of gravitational radiation. Here, we describe the analytical framework we developed to employ in our numerical model. The numerical studies are planned for the future work.