用于环境中生物磁性检测的便携式磁强计

M. Limes, E. Foley, T. Kornack, S. Caliga, S. McBride, A. Braun, W. Lee, V. Lucivero, M. Romalis
{"title":"用于环境中生物磁性检测的便携式磁强计","authors":"M. Limes, E. Foley, T. Kornack, S. Caliga, S. McBride, A. Braun, W. Lee, V. Lucivero, M. Romalis","doi":"10.1103/physrevapplied.14.011002","DOIUrl":null,"url":null,"abstract":"We present a method of optical magnetometry with parts-per-billion resolution that is able to detect biomagnetic signals generated from the human brain and heart in Earth's ambient environment. Our magnetically silent sensors measure the total magnetic field by detecting the free-precession frequency of highly spin-polarized alkali metal vapor. A first-order gradiometer is formed from two magnetometers that are separated by a 3 cm baseline. Our gradiometer operates from a laptop consuming 5 W over a USB port, enabled by state-of-the-art micro-fabricated alkali vapor cells, advanced thermal insulation, custom electronics, and laser packages within the sensor head. The gradiometer obtains a sensitivity of 16 fT/cm/Hz$^{1/2}$ outdoors, which we use to detect neuronal electrical currents and magnetic cardiography signals. Recording of neuronal magnetic fields is one of a few available methods for non-invasive functional brain imaging that usually requires extensive magnetic shielding and other infractructure. This work demonstrates the possibility of a dense array of portable biomagnetic sensors that are deployable in a variety of natural environments.","PeriodicalId":8462,"journal":{"name":"arXiv: Medical Physics","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":"{\"title\":\"Portable Magnetometry for Detection of Biomagnetism in Ambient Environments\",\"authors\":\"M. Limes, E. Foley, T. Kornack, S. Caliga, S. McBride, A. Braun, W. Lee, V. Lucivero, M. Romalis\",\"doi\":\"10.1103/physrevapplied.14.011002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a method of optical magnetometry with parts-per-billion resolution that is able to detect biomagnetic signals generated from the human brain and heart in Earth's ambient environment. Our magnetically silent sensors measure the total magnetic field by detecting the free-precession frequency of highly spin-polarized alkali metal vapor. A first-order gradiometer is formed from two magnetometers that are separated by a 3 cm baseline. Our gradiometer operates from a laptop consuming 5 W over a USB port, enabled by state-of-the-art micro-fabricated alkali vapor cells, advanced thermal insulation, custom electronics, and laser packages within the sensor head. The gradiometer obtains a sensitivity of 16 fT/cm/Hz$^{1/2}$ outdoors, which we use to detect neuronal electrical currents and magnetic cardiography signals. Recording of neuronal magnetic fields is one of a few available methods for non-invasive functional brain imaging that usually requires extensive magnetic shielding and other infractructure. This work demonstrates the possibility of a dense array of portable biomagnetic sensors that are deployable in a variety of natural environments.\",\"PeriodicalId\":8462,\"journal\":{\"name\":\"arXiv: Medical Physics\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"79\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Medical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevapplied.14.011002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevapplied.14.011002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 79

摘要

我们提出了一种十亿分之一分辨率的光学磁强计方法,能够检测地球环境中人类大脑和心脏产生的生物磁信号。我们的磁静音传感器通过检测高自旋极化碱金属蒸气的自由进动频率来测量总磁场。一阶梯度仪由两个磁力计组成,它们被3厘米的基线隔开。我们的梯度仪通过USB端口从一台消耗5w功率的笔记本电脑上运行,通过最先进的微制造碱蒸汽电池、先进的隔热材料、定制电子设备和传感器头内的激光封装实现。该梯度仪在室外的灵敏度为16 fT/cm/Hz$^{1/2}$,我们用它来检测神经元电流和磁心动图信号。神经元磁场的记录是少数几种可用的非侵入性脑功能成像方法之一,通常需要广泛的磁屏蔽和其他基础设施。这项工作证明了在各种自然环境中部署密集的便携式生物磁传感器阵列的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Portable Magnetometry for Detection of Biomagnetism in Ambient Environments
We present a method of optical magnetometry with parts-per-billion resolution that is able to detect biomagnetic signals generated from the human brain and heart in Earth's ambient environment. Our magnetically silent sensors measure the total magnetic field by detecting the free-precession frequency of highly spin-polarized alkali metal vapor. A first-order gradiometer is formed from two magnetometers that are separated by a 3 cm baseline. Our gradiometer operates from a laptop consuming 5 W over a USB port, enabled by state-of-the-art micro-fabricated alkali vapor cells, advanced thermal insulation, custom electronics, and laser packages within the sensor head. The gradiometer obtains a sensitivity of 16 fT/cm/Hz$^{1/2}$ outdoors, which we use to detect neuronal electrical currents and magnetic cardiography signals. Recording of neuronal magnetic fields is one of a few available methods for non-invasive functional brain imaging that usually requires extensive magnetic shielding and other infractructure. This work demonstrates the possibility of a dense array of portable biomagnetic sensors that are deployable in a variety of natural environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Role of AI in Theranostics: Towards Routine Personalized Radiopharmaceutical Therapies Non-contact, in-vivo, functional, and structural ophthalmic imaging using multimodal photoacoustic remote sensing (PARS) microscopy and swept source optical coherence tomography (SS-OCT) Deep learning-based tumor segmentation on digital images of histopathology slides for microdosimetry applications Magnetic Resonance Elastography and Portal Hypertension: Influence of the Portal Venous Flow on the Liver Stiffness Navigator-Free Submillimeter Diffusion Imaging Using Multishot-Encoded Simultaneous Multi-Slice (MUSIUM)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1