基于CNN和LSTM网络的高光谱图像高效降维

H. Tulapurkar, Biplab Banerjee, B. Mohan
{"title":"基于CNN和LSTM网络的高光谱图像高效降维","authors":"H. Tulapurkar, Biplab Banerjee, B. Mohan","doi":"10.1109/InGARSS48198.2020.9358957","DOIUrl":null,"url":null,"abstract":"Convolutional neural networks (CNN) which is a feature-based machine learning algorithm is very popular in hyperspectral image (HSI) classification. CNN exploits the spatial relationship between HIS. However, HSI intrinsically have a sequence-based data structure called the spectral features. Combining spectral and spatial information offers a more comprehensive classification approach. 3D-CNN can exploit Spatial-spectral relationship but can be computationally expensive. LSTM, an important branch of the deep learning family, is mainly designed to handle Sequential data. In this paper we propose a model that uses the 1D CNN and 2D-CNN for extracting the spatial features and a LSTM for extracting the spectral features. Experimental results show that our method outperforms the accuracies reported in the existing CNN and LSTM based methods.","PeriodicalId":6797,"journal":{"name":"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)","volume":"114 1","pages":"213-216"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effective and Efficient Dimensionality Reduction of Hyperspectral Image using CNN and LSTM network\",\"authors\":\"H. Tulapurkar, Biplab Banerjee, B. Mohan\",\"doi\":\"10.1109/InGARSS48198.2020.9358957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional neural networks (CNN) which is a feature-based machine learning algorithm is very popular in hyperspectral image (HSI) classification. CNN exploits the spatial relationship between HIS. However, HSI intrinsically have a sequence-based data structure called the spectral features. Combining spectral and spatial information offers a more comprehensive classification approach. 3D-CNN can exploit Spatial-spectral relationship but can be computationally expensive. LSTM, an important branch of the deep learning family, is mainly designed to handle Sequential data. In this paper we propose a model that uses the 1D CNN and 2D-CNN for extracting the spatial features and a LSTM for extracting the spectral features. Experimental results show that our method outperforms the accuracies reported in the existing CNN and LSTM based methods.\",\"PeriodicalId\":6797,\"journal\":{\"name\":\"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)\",\"volume\":\"114 1\",\"pages\":\"213-216\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/InGARSS48198.2020.9358957\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/InGARSS48198.2020.9358957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

卷积神经网络(CNN)是一种基于特征的机器学习算法,在高光谱图像分类中非常流行。CNN利用HIS之间的空间关系。然而,恒生指数本质上有一个基于序列的数据结构,称为光谱特征。结合光谱和空间信息提供了更全面的分类方法。3D-CNN可以利用空间-光谱关系,但计算成本很高。LSTM是深度学习家族的一个重要分支,主要用于处理序列数据。在本文中,我们提出了一个使用1D CNN和2d CNN提取空间特征和LSTM提取光谱特征的模型。实验结果表明,该方法的准确率优于现有的基于CNN和LSTM的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effective and Efficient Dimensionality Reduction of Hyperspectral Image using CNN and LSTM network
Convolutional neural networks (CNN) which is a feature-based machine learning algorithm is very popular in hyperspectral image (HSI) classification. CNN exploits the spatial relationship between HIS. However, HSI intrinsically have a sequence-based data structure called the spectral features. Combining spectral and spatial information offers a more comprehensive classification approach. 3D-CNN can exploit Spatial-spectral relationship but can be computationally expensive. LSTM, an important branch of the deep learning family, is mainly designed to handle Sequential data. In this paper we propose a model that uses the 1D CNN and 2D-CNN for extracting the spatial features and a LSTM for extracting the spectral features. Experimental results show that our method outperforms the accuracies reported in the existing CNN and LSTM based methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
InGARSS 2020 Copyright Page Automatic Road Delineation Using Deep Neural Network Sparse Representation of Injected Details for MRA-Based Pansharpening InGARSS 2020 Reviewers Experimental Analysis of the Hongqi-1 H9 Satellite Imagery for Geometric Positioning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1