直升机自适应神经飞行控制系统

S. Suresh
{"title":"直升机自适应神经飞行控制系统","authors":"S. Suresh","doi":"10.1109/CISDA.2009.5356560","DOIUrl":null,"url":null,"abstract":"This paper presents an adaptive neural flight control design for helicopters performing nonlinear maneuver. The control strategy uses a neural controller aiding an existing conventional controller. The neural controller uses a real-time learning dynamic radial basis function network, which uses Lyapunov based on-line update rule integrated with the neuron growth criterion. The real-time learning dynamic radial basis function network does not require a priori training and also find a compact network for implementation. The proposed adaptive law provide necessary global stability and better tracking performance. The simulation studies are carried-out using a nonlinear desktop simulation model. The performances of the proposed adaptive control mechanism clearly show that it is very effective when the helicopter is performing nonlinear maneuver.","PeriodicalId":6407,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications","volume":"125 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Adaptive neural flight control system for helicopter\",\"authors\":\"S. Suresh\",\"doi\":\"10.1109/CISDA.2009.5356560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an adaptive neural flight control design for helicopters performing nonlinear maneuver. The control strategy uses a neural controller aiding an existing conventional controller. The neural controller uses a real-time learning dynamic radial basis function network, which uses Lyapunov based on-line update rule integrated with the neuron growth criterion. The real-time learning dynamic radial basis function network does not require a priori training and also find a compact network for implementation. The proposed adaptive law provide necessary global stability and better tracking performance. The simulation studies are carried-out using a nonlinear desktop simulation model. The performances of the proposed adaptive control mechanism clearly show that it is very effective when the helicopter is performing nonlinear maneuver.\",\"PeriodicalId\":6407,\"journal\":{\"name\":\"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications\",\"volume\":\"125 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISDA.2009.5356560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISDA.2009.5356560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种针对直升机非线性机动的自适应神经飞行控制设计方法。该控制策略使用神经控制器辅助现有的传统控制器。神经控制器采用实时学习的动态径向基函数网络,该网络采用基于Lyapunov的在线更新规则与神经元生长准则相结合。实时学习动态径向基函数网络不需要先验训练,也可以找到一个紧凑的网络来实现。所提出的自适应律提供了必要的全局稳定性和较好的跟踪性能。仿真研究采用非线性桌面仿真模型进行。仿真结果表明,所提出的自适应控制机制在直升机进行非线性机动时是非常有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive neural flight control system for helicopter
This paper presents an adaptive neural flight control design for helicopters performing nonlinear maneuver. The control strategy uses a neural controller aiding an existing conventional controller. The neural controller uses a real-time learning dynamic radial basis function network, which uses Lyapunov based on-line update rule integrated with the neuron growth criterion. The real-time learning dynamic radial basis function network does not require a priori training and also find a compact network for implementation. The proposed adaptive law provide necessary global stability and better tracking performance. The simulation studies are carried-out using a nonlinear desktop simulation model. The performances of the proposed adaptive control mechanism clearly show that it is very effective when the helicopter is performing nonlinear maneuver.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolving spiking neural networks: A novel growth algorithm corrects the teacher Emitter geolocation using low-accuracy direction-finding sensors Secure two and multi-party association rule mining Passive multitarget tracking using transmitters of opportunity Bias phenomenon and analysis of a nonlinear transformation in a mobile passive sensor network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1