Beya Heritier, Rowayda F. Mahmoud, A. El Saghir, M. Shaat, A. Badawi
{"title":"TRIGA mark II型研究堆乏燃料安全评价与管理","authors":"Beya Heritier, Rowayda F. Mahmoud, A. El Saghir, M. Shaat, A. Badawi","doi":"10.1515/kern-2022-0016","DOIUrl":null,"url":null,"abstract":"Abstract Democratic Republic of Congo (DRC) has a TRIGA mark II research reactor called TRICO II, its design power is 1.00 MW. The reactor was in extended shutdown state since November 2004. The DRC government has decided to resume its operation using the last uploaded core. One of the safety features to be determined before putting the spent fuel into the reactor core is the calculation of its excess reactivity, radionuclide inventories as well as its discharge burn-up. The spent fuel was modeled and simulated by using Monte Carlo software, MCNPX code. The input data and the horizontal and vertical modeling for the fuel pins, control rods and moderator were done. The model results were validated by calculating the effective delayed neutron fraction (β eff) and the worth of the control rods. The results of the criticality and fuel burn-up were compared with the reference design parameters and with the experimental measurements and it were found in good agreement. The calculations showed that the last uploaded core has 47.00 g of 235U which represent only 2% of fissile materials. The depletion analysis results showed that the highest radio-activities come from 151Sm, 137Cs, 90Y, 90Sr and 85Kr.","PeriodicalId":17787,"journal":{"name":"Kerntechnik","volume":"55 1","pages":"615 - 624"},"PeriodicalIF":0.4000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Safety assessment and management of spent nuclear fuel for TRIGA mark II research reactor\",\"authors\":\"Beya Heritier, Rowayda F. Mahmoud, A. El Saghir, M. Shaat, A. Badawi\",\"doi\":\"10.1515/kern-2022-0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Democratic Republic of Congo (DRC) has a TRIGA mark II research reactor called TRICO II, its design power is 1.00 MW. The reactor was in extended shutdown state since November 2004. The DRC government has decided to resume its operation using the last uploaded core. One of the safety features to be determined before putting the spent fuel into the reactor core is the calculation of its excess reactivity, radionuclide inventories as well as its discharge burn-up. The spent fuel was modeled and simulated by using Monte Carlo software, MCNPX code. The input data and the horizontal and vertical modeling for the fuel pins, control rods and moderator were done. The model results were validated by calculating the effective delayed neutron fraction (β eff) and the worth of the control rods. The results of the criticality and fuel burn-up were compared with the reference design parameters and with the experimental measurements and it were found in good agreement. The calculations showed that the last uploaded core has 47.00 g of 235U which represent only 2% of fissile materials. The depletion analysis results showed that the highest radio-activities come from 151Sm, 137Cs, 90Y, 90Sr and 85Kr.\",\"PeriodicalId\":17787,\"journal\":{\"name\":\"Kerntechnik\",\"volume\":\"55 1\",\"pages\":\"615 - 624\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kerntechnik\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/kern-2022-0016\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kerntechnik","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/kern-2022-0016","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
刚果民主共和国(DRC)有一座TRIGA mark II型研究堆,称为TRICO II,其设计功率为1.00 MW。该反应堆自2004年11月以来一直处于长时间关闭状态。刚果民主共和国政府决定使用最后上传的核恢复其运行。在将乏燃料放入反应堆堆芯之前,需要确定的安全特性之一是计算其过度反应性、放射性核素库存以及排放燃耗。利用蒙特卡罗软件MCNPX代码对乏燃料进行了建模和仿真。完成了燃料销、控制棒和慢化剂的输入数据和水平、垂直建模。通过计算有效延迟中子分数(β eff)和控制棒的价值,对模型结果进行了验证。将临界值和燃耗值与参考设计参数和实验测量值进行了比较,结果吻合较好。计算表明,最后上传的堆芯含有47.00克235U,仅占裂变材料的2%。损耗分析结果表明,151Sm、137Cs、90Y、90Sr和85Kr的放射性活性最高。
Safety assessment and management of spent nuclear fuel for TRIGA mark II research reactor
Abstract Democratic Republic of Congo (DRC) has a TRIGA mark II research reactor called TRICO II, its design power is 1.00 MW. The reactor was in extended shutdown state since November 2004. The DRC government has decided to resume its operation using the last uploaded core. One of the safety features to be determined before putting the spent fuel into the reactor core is the calculation of its excess reactivity, radionuclide inventories as well as its discharge burn-up. The spent fuel was modeled and simulated by using Monte Carlo software, MCNPX code. The input data and the horizontal and vertical modeling for the fuel pins, control rods and moderator were done. The model results were validated by calculating the effective delayed neutron fraction (β eff) and the worth of the control rods. The results of the criticality and fuel burn-up were compared with the reference design parameters and with the experimental measurements and it were found in good agreement. The calculations showed that the last uploaded core has 47.00 g of 235U which represent only 2% of fissile materials. The depletion analysis results showed that the highest radio-activities come from 151Sm, 137Cs, 90Y, 90Sr and 85Kr.
期刊介绍:
Kerntechnik is an independent journal for nuclear engineering (including design, operation, safety and economics of nuclear power stations, research reactors and simulators), energy systems, radiation (ionizing radiation in industry, medicine and research) and radiological protection (biological effects of ionizing radiation, the system of protection for occupational, medical and public exposures, the assessment of doses, operational protection and safety programs, management of radioactive wastes, decommissioning and regulatory requirements).