Federico Montori, Lorenzo Gigli, L. Sciullo, M. D. Felice
{"title":"LA-MQTT:物联网的位置感知发布-订阅通信","authors":"Federico Montori, Lorenzo Gigli, L. Sciullo, M. D. Felice","doi":"10.1145/3529978","DOIUrl":null,"url":null,"abstract":"Nowadays, several Internet of Things (IoT) deployments use publish-subscribe paradigms to disseminate IoT data to a pool of interested consumers. At the moment, the most widespread standard for such scenarios is MQTT. We also register an increasing interest in IoT-enabled Location-Based Services, where data must be disseminated over a target area and its spatial relevance and the current positions of the consumers must be taken into account. Unfortunately, the MQTT protocol does not support location awareness, and hence it may result in notifying consumers that are geographically far from the data source, causing increased network overhead and poor Quality of Service (QoS). We address the issue by proposing LA-MQTT, an extension to standard MQTT supporting spatial-aware publish-subscribe communications on IoT scenarios. LA-MQTT is broker-agnostic and fully backward compatible with standard MQTT. As monitoring the position of subscribers over time may cause privacy concerns, LA-MQTT carefully supports location privacy preservation, for which the optimal tradeoff with the QoS of the spatial notifications is addressed via a learning-based algorithm. We demonstrate the effectiveness of LA-MQTT by experimentally evaluating its features via large-scale hybrid simulations, including real and virtual components. Finally, we provide a Proof of Concept real implementation of an LA-MQTT scenario.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":"33 1","pages":"1 - 28"},"PeriodicalIF":3.5000,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"LA-MQTT: Location-aware Publish-subscribe Communications for the Internet of Things\",\"authors\":\"Federico Montori, Lorenzo Gigli, L. Sciullo, M. D. Felice\",\"doi\":\"10.1145/3529978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, several Internet of Things (IoT) deployments use publish-subscribe paradigms to disseminate IoT data to a pool of interested consumers. At the moment, the most widespread standard for such scenarios is MQTT. We also register an increasing interest in IoT-enabled Location-Based Services, where data must be disseminated over a target area and its spatial relevance and the current positions of the consumers must be taken into account. Unfortunately, the MQTT protocol does not support location awareness, and hence it may result in notifying consumers that are geographically far from the data source, causing increased network overhead and poor Quality of Service (QoS). We address the issue by proposing LA-MQTT, an extension to standard MQTT supporting spatial-aware publish-subscribe communications on IoT scenarios. LA-MQTT is broker-agnostic and fully backward compatible with standard MQTT. As monitoring the position of subscribers over time may cause privacy concerns, LA-MQTT carefully supports location privacy preservation, for which the optimal tradeoff with the QoS of the spatial notifications is addressed via a learning-based algorithm. We demonstrate the effectiveness of LA-MQTT by experimentally evaluating its features via large-scale hybrid simulations, including real and virtual components. Finally, we provide a Proof of Concept real implementation of an LA-MQTT scenario.\",\"PeriodicalId\":29764,\"journal\":{\"name\":\"ACM Transactions on Internet of Things\",\"volume\":\"33 1\",\"pages\":\"1 - 28\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2022-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Internet of Things\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3529978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3529978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
LA-MQTT: Location-aware Publish-subscribe Communications for the Internet of Things
Nowadays, several Internet of Things (IoT) deployments use publish-subscribe paradigms to disseminate IoT data to a pool of interested consumers. At the moment, the most widespread standard for such scenarios is MQTT. We also register an increasing interest in IoT-enabled Location-Based Services, where data must be disseminated over a target area and its spatial relevance and the current positions of the consumers must be taken into account. Unfortunately, the MQTT protocol does not support location awareness, and hence it may result in notifying consumers that are geographically far from the data source, causing increased network overhead and poor Quality of Service (QoS). We address the issue by proposing LA-MQTT, an extension to standard MQTT supporting spatial-aware publish-subscribe communications on IoT scenarios. LA-MQTT is broker-agnostic and fully backward compatible with standard MQTT. As monitoring the position of subscribers over time may cause privacy concerns, LA-MQTT carefully supports location privacy preservation, for which the optimal tradeoff with the QoS of the spatial notifications is addressed via a learning-based algorithm. We demonstrate the effectiveness of LA-MQTT by experimentally evaluating its features via large-scale hybrid simulations, including real and virtual components. Finally, we provide a Proof of Concept real implementation of an LA-MQTT scenario.