基于受限噪声通道的深度神经网络识别功能内含子

Alan Joseph Bekker, M. Chorev, L. Carmel, J. Goldberger
{"title":"基于受限噪声通道的深度神经网络识别功能内含子","authors":"Alan Joseph Bekker, M. Chorev, L. Carmel, J. Goldberger","doi":"10.1109/MLSP.2017.8168186","DOIUrl":null,"url":null,"abstract":"An appreciable fraction of introns is thought to be involved in cellular functions, but there is no obvious way to predict which specific intron is likely to be functional. For each intron we are given a feature representation that is based on its evolutionary patterns. For a small subsets of introns we are also given an indication that they are functional. For all other introns it is not known whether they are functional or not. Our task is to estimate what fraction of introns are functional and, how likely it is that each individual intron is functional. We define a probabilistic classification model that treats the given functionality labels as noisy versions of labels created by a Deep Neural Network model. The maximum-likelihood model parameters are found by utilizing the Expectation-Maximization algorithm. We show that roughly 80% of the functional introns are still not recognized as such, and that roughly a third of all introns are functional.","PeriodicalId":6542,"journal":{"name":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"40 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A deep neural network witharestricted noisy channel for identification of functional introns\",\"authors\":\"Alan Joseph Bekker, M. Chorev, L. Carmel, J. Goldberger\",\"doi\":\"10.1109/MLSP.2017.8168186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An appreciable fraction of introns is thought to be involved in cellular functions, but there is no obvious way to predict which specific intron is likely to be functional. For each intron we are given a feature representation that is based on its evolutionary patterns. For a small subsets of introns we are also given an indication that they are functional. For all other introns it is not known whether they are functional or not. Our task is to estimate what fraction of introns are functional and, how likely it is that each individual intron is functional. We define a probabilistic classification model that treats the given functionality labels as noisy versions of labels created by a Deep Neural Network model. The maximum-likelihood model parameters are found by utilizing the Expectation-Maximization algorithm. We show that roughly 80% of the functional introns are still not recognized as such, and that roughly a third of all introns are functional.\",\"PeriodicalId\":6542,\"journal\":{\"name\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"volume\":\"40 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2017.8168186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2017.8168186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

相当一部分内含子被认为参与细胞功能,但没有明显的方法来预测哪个特定的内含子可能是功能性的。对于每个内含子,我们给出了基于其进化模式的特征表示。对于一小部分内含子,我们也得到了它们是功能性的指示。对于所有其他的内含子,我们不知道它们是否有功能。我们的任务是估计多少内含子是功能性的,以及每个内含子是功能性的可能性有多大。我们定义了一个概率分类模型,该模型将给定的功能标签视为由深度神经网络模型创建的标签的噪声版本。利用期望最大化算法找到最大似然模型参数。我们发现,大约80%的功能性内含子仍未被识别,大约三分之一的内含子是功能性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A deep neural network witharestricted noisy channel for identification of functional introns
An appreciable fraction of introns is thought to be involved in cellular functions, but there is no obvious way to predict which specific intron is likely to be functional. For each intron we are given a feature representation that is based on its evolutionary patterns. For a small subsets of introns we are also given an indication that they are functional. For all other introns it is not known whether they are functional or not. Our task is to estimate what fraction of introns are functional and, how likely it is that each individual intron is functional. We define a probabilistic classification model that treats the given functionality labels as noisy versions of labels created by a Deep Neural Network model. The maximum-likelihood model parameters are found by utilizing the Expectation-Maximization algorithm. We show that roughly 80% of the functional introns are still not recognized as such, and that roughly a third of all introns are functional.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classical quadrature rules via Gaussian processes Does speech enhancement work with end-to-end ASR objectives?: Experimental analysis of multichannel end-to-end ASR Differential mutual information forward search for multi-kernel discriminant-component selection with an application to privacy-preserving classification Partitioning in signal processing using the object migration automaton and the pursuit paradigm Inferring room semantics using acoustic monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1