{"title":"量子蒙特卡洛早期(2):有限温度模拟","authors":"Michel Mareschal","doi":"10.1140/epjh/s13129-021-00026-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we present the second part of our historical survey on quantum Monte Carlo methods. We focus on the simulations performed at a finite temperature and based on Feynman’s path-integral formulation of quantum mechanics. We introduce the method and insist on the central role played by the description of the transition to superfluidity for Helium 4.</p></div>","PeriodicalId":791,"journal":{"name":"The European Physical Journal H","volume":"46 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The early years of quantum Monte Carlo (2): finite-temperature simulations\",\"authors\":\"Michel Mareschal\",\"doi\":\"10.1140/epjh/s13129-021-00026-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, we present the second part of our historical survey on quantum Monte Carlo methods. We focus on the simulations performed at a finite temperature and based on Feynman’s path-integral formulation of quantum mechanics. We introduce the method and insist on the central role played by the description of the transition to superfluidity for Helium 4.</p></div>\",\"PeriodicalId\":791,\"journal\":{\"name\":\"The European Physical Journal H\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal H\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjh/s13129-021-00026-5\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HISTORY & PHILOSOPHY OF SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal H","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjh/s13129-021-00026-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
The early years of quantum Monte Carlo (2): finite-temperature simulations
In this article, we present the second part of our historical survey on quantum Monte Carlo methods. We focus on the simulations performed at a finite temperature and based on Feynman’s path-integral formulation of quantum mechanics. We introduce the method and insist on the central role played by the description of the transition to superfluidity for Helium 4.
期刊介绍:
The purpose of this journal is to catalyse, foster, and disseminate an awareness and understanding of the historical development of ideas in contemporary physics, and more generally, ideas about how Nature works.
The scope explicitly includes:
- Contributions addressing the history of physics and of physical ideas and concepts, the interplay of physics and mathematics as well as the natural sciences, and the history and philosophy of sciences, together with discussions of experimental ideas and designs - inasmuch as they clearly relate, and preferably add, to the understanding of modern physics.
- Annotated and/or contextual translations of relevant foreign-language texts.
- Careful characterisations of old and/or abandoned ideas including past mistakes and false leads, thereby helping working physicists to assess how compelling contemporary ideas may turn out to be in future, i.e. with hindsight.