{"title":"学习对象级时空表征的异常事件检测","authors":"Jongmin Yu, Sejeong Lee, M. Jeon","doi":"10.2316/P.2017.848-013","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an approach for abnormal event detection, using the object-level spatio-temporal representation. Our approach detects an abnormal event in complex scenes which contain objects classified in various categories. We compute the object-level 3D Region-of-interest (3D RoI) and extract object-level 3D volume. Then, the object-level 3D volume is inputted to 3D deep convolutional neural network (3D-DCNN) for detecting the abnormal event. In the experiments, we compare our method with several methods on our experimental dataset.","PeriodicalId":49801,"journal":{"name":"Modeling Identification and Control","volume":"605 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Object-Level Spatio-Temporal Representation for Abnormal Event Detection\",\"authors\":\"Jongmin Yu, Sejeong Lee, M. Jeon\",\"doi\":\"10.2316/P.2017.848-013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an approach for abnormal event detection, using the object-level spatio-temporal representation. Our approach detects an abnormal event in complex scenes which contain objects classified in various categories. We compute the object-level 3D Region-of-interest (3D RoI) and extract object-level 3D volume. Then, the object-level 3D volume is inputted to 3D deep convolutional neural network (3D-DCNN) for detecting the abnormal event. In the experiments, we compare our method with several methods on our experimental dataset.\",\"PeriodicalId\":49801,\"journal\":{\"name\":\"Modeling Identification and Control\",\"volume\":\"605 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modeling Identification and Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.2316/P.2017.848-013\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modeling Identification and Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2316/P.2017.848-013","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Learning Object-Level Spatio-Temporal Representation for Abnormal Event Detection
In this paper, we propose an approach for abnormal event detection, using the object-level spatio-temporal representation. Our approach detects an abnormal event in complex scenes which contain objects classified in various categories. We compute the object-level 3D Region-of-interest (3D RoI) and extract object-level 3D volume. Then, the object-level 3D volume is inputted to 3D deep convolutional neural network (3D-DCNN) for detecting the abnormal event. In the experiments, we compare our method with several methods on our experimental dataset.
期刊介绍:
The aim of MIC is to present Nordic research activities in the field of modeling, identification and control to the international scientific community. Historically, the articles published in MIC presented the results of research carried out in Norway, or sponsored primarily by a Norwegian institution. Since 2009 the journal also accepts papers from the other Nordic countries.