基于融合的低光图像反射率和照度同时估计

A. Parihar, Kavinder Singh, Hrithik Rohilla, G. Asnani
{"title":"基于融合的低光图像反射率和照度同时估计","authors":"A. Parihar, Kavinder Singh, Hrithik Rohilla, G. Asnani","doi":"10.1049/ipr2.12114","DOIUrl":null,"url":null,"abstract":"Low-light image enhancement is a challenging field in image processing. Retinex-based methods perform well for low-light images. However, reflectance and illumination estimation is an ill-posed problem. This paper presents a new framework for the simultaneous estimation of reflectance and illumination for low-light image enhancement. The algorithm estimates multiple instances of illumination and reflectance and blends them to estimate the final components. The proposed approach uses multi-scale fusion for illumination estimation and naive fusion for reflectance estimation. Extensive experimentation and analysis with a large set of low-light images validates the performance of the proposed approach. The comparison shows the superiority of the proposed approach over most of the existing low-light image enhancement methods. The proposed method provides colour constancy in low-light image enhancement and preserves the naturalness of the image.","PeriodicalId":13486,"journal":{"name":"IET Image Process.","volume":"54 1","pages":"1410-1423"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Fusion-based simultaneous estimation of reflectance and illumination for low-light image enhancement\",\"authors\":\"A. Parihar, Kavinder Singh, Hrithik Rohilla, G. Asnani\",\"doi\":\"10.1049/ipr2.12114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low-light image enhancement is a challenging field in image processing. Retinex-based methods perform well for low-light images. However, reflectance and illumination estimation is an ill-posed problem. This paper presents a new framework for the simultaneous estimation of reflectance and illumination for low-light image enhancement. The algorithm estimates multiple instances of illumination and reflectance and blends them to estimate the final components. The proposed approach uses multi-scale fusion for illumination estimation and naive fusion for reflectance estimation. Extensive experimentation and analysis with a large set of low-light images validates the performance of the proposed approach. The comparison shows the superiority of the proposed approach over most of the existing low-light image enhancement methods. The proposed method provides colour constancy in low-light image enhancement and preserves the naturalness of the image.\",\"PeriodicalId\":13486,\"journal\":{\"name\":\"IET Image Process.\",\"volume\":\"54 1\",\"pages\":\"1410-1423\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Image Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/ipr2.12114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Image Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/ipr2.12114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

弱光图像增强是图像处理中的一个具有挑战性的领域。基于视黄醇的方法在低光图像中表现良好。然而,反射率和照度估计是一个不适定问题。本文提出了一种同时估计低光图像反射率和照度的新框架。该算法估计光照和反射率的多个实例,并将它们混合以估计最终的分量。该方法采用多尺度融合进行照度估计,朴素融合进行反射率估计。大量低光图像的实验和分析验证了该方法的有效性。对比结果表明,该方法优于现有的大多数弱光图像增强方法。该方法在保证弱光图像增强的色彩稳定性的同时,保留了图像的自然度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fusion-based simultaneous estimation of reflectance and illumination for low-light image enhancement
Low-light image enhancement is a challenging field in image processing. Retinex-based methods perform well for low-light images. However, reflectance and illumination estimation is an ill-posed problem. This paper presents a new framework for the simultaneous estimation of reflectance and illumination for low-light image enhancement. The algorithm estimates multiple instances of illumination and reflectance and blends them to estimate the final components. The proposed approach uses multi-scale fusion for illumination estimation and naive fusion for reflectance estimation. Extensive experimentation and analysis with a large set of low-light images validates the performance of the proposed approach. The comparison shows the superiority of the proposed approach over most of the existing low-light image enhancement methods. The proposed method provides colour constancy in low-light image enhancement and preserves the naturalness of the image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mask-Guided Image Person Removal with Data Synthesis EDAfuse: A encoder-decoder with atrous spatial pyramid network for infrared and visible image fusion Visible part prediction and temporal calibration for pedestrian detection STDC-MA Network for Semantic Segmentation Multi-similarity based Hyperrelation Network for few-shot segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1