{"title":"航天器机载激光测距系统设计中的数学建模方法","authors":"E. I. Starovoitov, D. Savchuk","doi":"10.36027/rdeng.0321.0000195","DOIUrl":null,"url":null,"abstract":"To perform rendezvous and docking of spacecraft (SC), it is necessary to detect and measure the coordinates of a passive space vehicle (SV) using the onboard aids of an active SV. For this purpose, in addition to radio engineering systems, laser-ranging systems (LRS) are used. A designing process of the onboard LRS for promising spacecraft is currently becoming more complicated and requires taking into account a lot of factors.The authors have developed the PC software to assess capabilities of onboard pulse LRS of spacecraft when working on the nearby or distant space objects that have a diffusely scattering surface, as well as are equipped with the corner reflectors. The software also allows us to calculate the LRS parameters, which, according to GOST R 50723-94, ensure eye-safety in the spectral range of 0.81 ... 1.5 microns in case of accidental irradiation.The energy of the intensifier pulse and the divergence of a sensing beam determine the LRS range and the distance of eye-safe observation, which are the most important indicators to characterize the onboard LRS capabilities. To ensure the best LRS range and safety characteristics simultaneously, it is necessary to solve the problem of multi-criteria optimization.The paper solves the problem of multi-criteria optimization for the maximum LRS range and the eye-safe observation distance by Pareto sets the use of which allows us to avoid uncertainty in choosing a significance of criteria.The results obtained show that the proposed methods can be successfully applied in designing onboard LRS of spacecraft.","PeriodicalId":22345,"journal":{"name":"Telecommunications and Radio Engineering","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical Modeling Methods in Designing Onboard Laser-Ranging Systems of Spacecraft\",\"authors\":\"E. I. Starovoitov, D. Savchuk\",\"doi\":\"10.36027/rdeng.0321.0000195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To perform rendezvous and docking of spacecraft (SC), it is necessary to detect and measure the coordinates of a passive space vehicle (SV) using the onboard aids of an active SV. For this purpose, in addition to radio engineering systems, laser-ranging systems (LRS) are used. A designing process of the onboard LRS for promising spacecraft is currently becoming more complicated and requires taking into account a lot of factors.The authors have developed the PC software to assess capabilities of onboard pulse LRS of spacecraft when working on the nearby or distant space objects that have a diffusely scattering surface, as well as are equipped with the corner reflectors. The software also allows us to calculate the LRS parameters, which, according to GOST R 50723-94, ensure eye-safety in the spectral range of 0.81 ... 1.5 microns in case of accidental irradiation.The energy of the intensifier pulse and the divergence of a sensing beam determine the LRS range and the distance of eye-safe observation, which are the most important indicators to characterize the onboard LRS capabilities. To ensure the best LRS range and safety characteristics simultaneously, it is necessary to solve the problem of multi-criteria optimization.The paper solves the problem of multi-criteria optimization for the maximum LRS range and the eye-safe observation distance by Pareto sets the use of which allows us to avoid uncertainty in choosing a significance of criteria.The results obtained show that the proposed methods can be successfully applied in designing onboard LRS of spacecraft.\",\"PeriodicalId\":22345,\"journal\":{\"name\":\"Telecommunications and Radio Engineering\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Telecommunications and Radio Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36027/rdeng.0321.0000195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telecommunications and Radio Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36027/rdeng.0321.0000195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
为了实现航天器的交会对接,需要利用主动航天器的机载辅助对被动航天器的坐标进行探测和测量。为此,除了无线电工程系统外,还使用激光测距系统(LRS)。未来航天器机载LRS的设计过程越来越复杂,需要考虑很多因素。作者开发了一种PC软件,用于评估航天器机载脉冲LRS在近距离或远距离具有扩散散射表面的空间物体上工作时的能力,并配备了角反射器。该软件还允许我们计算LRS参数,根据GOST R 50723-94,在0.81…1.5微米,以防意外辐照。增强器脉冲的能量和感应光束的发散度决定了LRS的距离和眼安全观测距离,这是表征机载LRS能力的最重要指标。为了同时保证最佳的LRS范围和安全特性,需要解决多准则优化问题。利用Pareto集解决了最大LRS距离和人眼安全观测距离的多准则优化问题,利用Pareto集避免了准则显著性选择的不确定性。结果表明,该方法可以成功地应用于星载LRS的设计。
Mathematical Modeling Methods in Designing Onboard Laser-Ranging Systems of Spacecraft
To perform rendezvous and docking of spacecraft (SC), it is necessary to detect and measure the coordinates of a passive space vehicle (SV) using the onboard aids of an active SV. For this purpose, in addition to radio engineering systems, laser-ranging systems (LRS) are used. A designing process of the onboard LRS for promising spacecraft is currently becoming more complicated and requires taking into account a lot of factors.The authors have developed the PC software to assess capabilities of onboard pulse LRS of spacecraft when working on the nearby or distant space objects that have a diffusely scattering surface, as well as are equipped with the corner reflectors. The software also allows us to calculate the LRS parameters, which, according to GOST R 50723-94, ensure eye-safety in the spectral range of 0.81 ... 1.5 microns in case of accidental irradiation.The energy of the intensifier pulse and the divergence of a sensing beam determine the LRS range and the distance of eye-safe observation, which are the most important indicators to characterize the onboard LRS capabilities. To ensure the best LRS range and safety characteristics simultaneously, it is necessary to solve the problem of multi-criteria optimization.The paper solves the problem of multi-criteria optimization for the maximum LRS range and the eye-safe observation distance by Pareto sets the use of which allows us to avoid uncertainty in choosing a significance of criteria.The results obtained show that the proposed methods can be successfully applied in designing onboard LRS of spacecraft.