用于人脸识别的Log-Gabor幅度模式直方图

J. Yi, Fei Su
{"title":"用于人脸识别的Log-Gabor幅度模式直方图","authors":"J. Yi, Fei Su","doi":"10.1109/ICASSP.2014.6853650","DOIUrl":null,"url":null,"abstract":"The Gabor-based features have achieved excellent performances for face recognition on traditional face databases. However, on the recent LFW (Labeled Faces in the Wild) face database, Gabor-based features attract little attention due to their high computing complexity and feature dimension and poor performance. In this paper, we propose a Gabor-based feature termed Histogram of Gabor Magnitude Patterns (HGMP) which is very simple but effective. HGMP adopts the Bag-of-Words (BoW) image representation framework. It views the Gabor filters as codewords and the Gabor magnitudes of each point as the responses of the point to these codewords. Then the point is coded by the orientation normalization and scale non-maximum suppression of its magnitudes, which are efficient to compute. Moreover, the number of codewords is so small that the feature dimension of HGMP is very low. In addition, we analyze the advantages of log-Gabor filters to Gabor filters to serve as the codewords, and propose to replace Gabor filters with log-Gabor filters in HGMP, which produces the Histogram of Log-Gabor Magnitude Patterns (HLGMP) feature. The experimental results on LFW show that HLGMP outperforms HGMP and it achieves the state-of-the-art performance, although its computing complexity and feature dimension are very low.","PeriodicalId":6545,"journal":{"name":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"55 1","pages":"519-523"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Histogram of Log-Gabor Magnitude Patterns for face recognition\",\"authors\":\"J. Yi, Fei Su\",\"doi\":\"10.1109/ICASSP.2014.6853650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Gabor-based features have achieved excellent performances for face recognition on traditional face databases. However, on the recent LFW (Labeled Faces in the Wild) face database, Gabor-based features attract little attention due to their high computing complexity and feature dimension and poor performance. In this paper, we propose a Gabor-based feature termed Histogram of Gabor Magnitude Patterns (HGMP) which is very simple but effective. HGMP adopts the Bag-of-Words (BoW) image representation framework. It views the Gabor filters as codewords and the Gabor magnitudes of each point as the responses of the point to these codewords. Then the point is coded by the orientation normalization and scale non-maximum suppression of its magnitudes, which are efficient to compute. Moreover, the number of codewords is so small that the feature dimension of HGMP is very low. In addition, we analyze the advantages of log-Gabor filters to Gabor filters to serve as the codewords, and propose to replace Gabor filters with log-Gabor filters in HGMP, which produces the Histogram of Log-Gabor Magnitude Patterns (HLGMP) feature. The experimental results on LFW show that HLGMP outperforms HGMP and it achieves the state-of-the-art performance, although its computing complexity and feature dimension are very low.\",\"PeriodicalId\":6545,\"journal\":{\"name\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"55 1\",\"pages\":\"519-523\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2014.6853650\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2014.6853650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

基于gabor特征的人脸识别在传统人脸数据库上取得了优异的效果。然而,在最近的LFW (Labeled Faces in the Wild)人脸数据库中,基于gabor的特征由于其较高的计算复杂度和特征维数以及较差的性能而很少受到关注。在本文中,我们提出了一个基于Gabor的特征,称为Gabor大小模式直方图(HGMP),这是非常简单但有效的。HGMP采用词袋(Bag-of-Words, BoW)图像表示框架。它将Gabor过滤器视为码字,并将每个点的Gabor幅度视为该点对这些码字的响应。然后对点进行方向归一化编码,并对其大小进行尺度非最大值抑制,提高了计算效率。而且码字的数量很少,使得HGMP的特征维数很低。此外,我们分析了log-Gabor滤波器作为码字的优点,并提出用log-Gabor滤波器代替HGMP中的Gabor滤波器,从而产生log-Gabor大小模式直方图(HLGMP)特征。在LFW上的实验结果表明,尽管HLGMP的计算复杂度和特征维数都很低,但其性能优于HGMP,达到了最先进的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Histogram of Log-Gabor Magnitude Patterns for face recognition
The Gabor-based features have achieved excellent performances for face recognition on traditional face databases. However, on the recent LFW (Labeled Faces in the Wild) face database, Gabor-based features attract little attention due to their high computing complexity and feature dimension and poor performance. In this paper, we propose a Gabor-based feature termed Histogram of Gabor Magnitude Patterns (HGMP) which is very simple but effective. HGMP adopts the Bag-of-Words (BoW) image representation framework. It views the Gabor filters as codewords and the Gabor magnitudes of each point as the responses of the point to these codewords. Then the point is coded by the orientation normalization and scale non-maximum suppression of its magnitudes, which are efficient to compute. Moreover, the number of codewords is so small that the feature dimension of HGMP is very low. In addition, we analyze the advantages of log-Gabor filters to Gabor filters to serve as the codewords, and propose to replace Gabor filters with log-Gabor filters in HGMP, which produces the Histogram of Log-Gabor Magnitude Patterns (HLGMP) feature. The experimental results on LFW show that HLGMP outperforms HGMP and it achieves the state-of-the-art performance, although its computing complexity and feature dimension are very low.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multichannel detection of an unknown rank-one signal with uncalibrated receivers Design and implementation of a low power spike detection processor for 128-channel spike sorting microsystem On the convergence of average consensus with generalized metropolis-hasting weights A network of HF surface wave radars for maritime surveillance: Preliminary results in the German Bight Mobile real-time arousal detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1