{"title":"基于模型压缩的轻量级掌纹认证系统设计","authors":"Zih-Ching Chen, Sin-Ye Jhong, Chin-Hsien Hsia","doi":"10.6688/JISE.202107_37(4).0005","DOIUrl":null,"url":null,"abstract":"Palm-vein authentication is a secure and highly accurate vein feature authentication technology that has recently gained a lot of attention. Convolutional neural networks (CNNs) provide relatively high performance in the field of image processing, computer vision, and have been adapted for feature learning of palm-vein images. However, they often require high computation that not only are infeasible for real-time vein verification but also a challenge to apply on mobile devices. To address this limitation, we proposed a lightweight MobileNet based deep learning (DL) architecture with depthwise separable convolution (DSC) and adopt a knowledge distillation (KD) method to learn the knowledge from the more complex CNN, which makes it small but effective. Through the depth of separable convolution, the number of model parameters is significantly decreased, while still remaining high accuracy and stable performance. Experiments demonstrated that the size of the proposed model is 100 times less than the Inception_v3 model, while the performance can go beyond 98% correct identification rate (CIR) for the CASIA database.","PeriodicalId":50177,"journal":{"name":"Journal of Information Science and Engineering","volume":"16 1","pages":"809-825"},"PeriodicalIF":0.5000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design of a Lightweight Palmf-Vein Authentication System Based on Model Compression\",\"authors\":\"Zih-Ching Chen, Sin-Ye Jhong, Chin-Hsien Hsia\",\"doi\":\"10.6688/JISE.202107_37(4).0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Palm-vein authentication is a secure and highly accurate vein feature authentication technology that has recently gained a lot of attention. Convolutional neural networks (CNNs) provide relatively high performance in the field of image processing, computer vision, and have been adapted for feature learning of palm-vein images. However, they often require high computation that not only are infeasible for real-time vein verification but also a challenge to apply on mobile devices. To address this limitation, we proposed a lightweight MobileNet based deep learning (DL) architecture with depthwise separable convolution (DSC) and adopt a knowledge distillation (KD) method to learn the knowledge from the more complex CNN, which makes it small but effective. Through the depth of separable convolution, the number of model parameters is significantly decreased, while still remaining high accuracy and stable performance. Experiments demonstrated that the size of the proposed model is 100 times less than the Inception_v3 model, while the performance can go beyond 98% correct identification rate (CIR) for the CASIA database.\",\"PeriodicalId\":50177,\"journal\":{\"name\":\"Journal of Information Science and Engineering\",\"volume\":\"16 1\",\"pages\":\"809-825\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Science and Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.6688/JISE.202107_37(4).0005\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.6688/JISE.202107_37(4).0005","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Design of a Lightweight Palmf-Vein Authentication System Based on Model Compression
Palm-vein authentication is a secure and highly accurate vein feature authentication technology that has recently gained a lot of attention. Convolutional neural networks (CNNs) provide relatively high performance in the field of image processing, computer vision, and have been adapted for feature learning of palm-vein images. However, they often require high computation that not only are infeasible for real-time vein verification but also a challenge to apply on mobile devices. To address this limitation, we proposed a lightweight MobileNet based deep learning (DL) architecture with depthwise separable convolution (DSC) and adopt a knowledge distillation (KD) method to learn the knowledge from the more complex CNN, which makes it small but effective. Through the depth of separable convolution, the number of model parameters is significantly decreased, while still remaining high accuracy and stable performance. Experiments demonstrated that the size of the proposed model is 100 times less than the Inception_v3 model, while the performance can go beyond 98% correct identification rate (CIR) for the CASIA database.
期刊介绍:
The Journal of Information Science and Engineering is dedicated to the dissemination of information on computer science, computer engineering, and computer systems. This journal encourages articles on original research in the areas of computer hardware, software, man-machine interface, theory and applications. tutorial papers in the above-mentioned areas, and state-of-the-art papers on various aspects of computer systems and applications.