基于局部属性分析和离散不可分剪切波变换的SAR图像去噪

Ye Yuan, Liangzhuo Xie, Yewen Zhu, Sheng Wang, Zhemin Zhuang
{"title":"基于局部属性分析和离散不可分剪切波变换的SAR图像去噪","authors":"Ye Yuan, Liangzhuo Xie, Yewen Zhu, Sheng Wang, Zhemin Zhuang","doi":"10.1109/CISP-BMEI.2017.8301960","DOIUrl":null,"url":null,"abstract":"A new SAR image de-noising approach that uses the local properties analysis of SAR image and the discrete nonseparable shearlet transform (DNST) is proposed in this paper. According to the local properties analysis method, the SAR image is divided into homogeneous region, non-homogeneous region and target region. The homogeneous region uses the average filter to de-noising. The non-homogeneous region uses the DNST transform to de-noising and target region is reserved directly. The experimental results show that the proposed approach can efficiently reduce the speckle noises and improve the edge-preserving ability.","PeriodicalId":6474,"journal":{"name":"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"33 7-8 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SAR image de-noising using local properties analysis and discrete non-separable shearlet transform\",\"authors\":\"Ye Yuan, Liangzhuo Xie, Yewen Zhu, Sheng Wang, Zhemin Zhuang\",\"doi\":\"10.1109/CISP-BMEI.2017.8301960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new SAR image de-noising approach that uses the local properties analysis of SAR image and the discrete nonseparable shearlet transform (DNST) is proposed in this paper. According to the local properties analysis method, the SAR image is divided into homogeneous region, non-homogeneous region and target region. The homogeneous region uses the average filter to de-noising. The non-homogeneous region uses the DNST transform to de-noising and target region is reserved directly. The experimental results show that the proposed approach can efficiently reduce the speckle noises and improve the edge-preserving ability.\",\"PeriodicalId\":6474,\"journal\":{\"name\":\"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"volume\":\"33 7-8 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISP-BMEI.2017.8301960\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI.2017.8301960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种利用SAR图像局部特性分析和离散不可分离剪切波变换(DNST)的SAR图像去噪方法。根据局部属性分析方法,将SAR图像分为均匀区域、非均匀区域和目标区域。均匀区采用平均滤波器去噪。非均匀区域采用DNST变换去噪,直接保留目标区域。实验结果表明,该方法能有效地降低散斑噪声,提高图像的边缘保持能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SAR image de-noising using local properties analysis and discrete non-separable shearlet transform
A new SAR image de-noising approach that uses the local properties analysis of SAR image and the discrete nonseparable shearlet transform (DNST) is proposed in this paper. According to the local properties analysis method, the SAR image is divided into homogeneous region, non-homogeneous region and target region. The homogeneous region uses the average filter to de-noising. The non-homogeneous region uses the DNST transform to de-noising and target region is reserved directly. The experimental results show that the proposed approach can efficiently reduce the speckle noises and improve the edge-preserving ability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Polarization Characterization and Evaluation of Healing Process of the Damaged-skin Applied with Chitosan and Silicone Hydrogel Applicator Design and Implementation of OpenDayLight Manager Application Extraction of cutting plans in craniosynostosis using convolutional neural networks Evaluation of Flight Test Data Quality Based on Rough Set Theory Radar Emitter Type Identification Effect Based On Different Structural Deep Feedforward Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1