{"title":"降膜吸收剂对水-锂混合物的传热传质增强潜力——通过文献综述(RP-1462)","authors":"A. Behfar, Ziqi Shen, Josephine Lau, Yuebin Yu","doi":"10.1080/10789669.2014.920224","DOIUrl":null,"url":null,"abstract":"Significant process intensification (PI) of heat and mass transfer is indispensable in building compact and energy efficient absorption refrigeration systems. High potentials exist to achieve the required PI through (1) development of active heat and mass transfer enhancement techniques and (2) combining the active enhancement mechanism with proven and widely used passive enhancement techniques in transport processes. There is limited research on the effect of active mechanisms, such as vibration, on heat and mass transfer coefficients in absorption systems with falling film horizontal-tube absorbers. In this general survey, with the aim to enlighten the path for active mechanisms development, recorded heat and mass transfer enhancements via active mechanisms were extracted from pertinent research works, and were summarized in tables suitable for evaluation and comparison. The potential for future research on enhancing heat and mass transfer in absorption chillers was identified.","PeriodicalId":13238,"journal":{"name":"HVAC&R Research","volume":"33 1","pages":"570 - 580"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Heat and mass transfer enhancement potential on falling film absorbers for water-LiBr mixtures via a literature review (RP-1462)\",\"authors\":\"A. Behfar, Ziqi Shen, Josephine Lau, Yuebin Yu\",\"doi\":\"10.1080/10789669.2014.920224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Significant process intensification (PI) of heat and mass transfer is indispensable in building compact and energy efficient absorption refrigeration systems. High potentials exist to achieve the required PI through (1) development of active heat and mass transfer enhancement techniques and (2) combining the active enhancement mechanism with proven and widely used passive enhancement techniques in transport processes. There is limited research on the effect of active mechanisms, such as vibration, on heat and mass transfer coefficients in absorption systems with falling film horizontal-tube absorbers. In this general survey, with the aim to enlighten the path for active mechanisms development, recorded heat and mass transfer enhancements via active mechanisms were extracted from pertinent research works, and were summarized in tables suitable for evaluation and comparison. The potential for future research on enhancing heat and mass transfer in absorption chillers was identified.\",\"PeriodicalId\":13238,\"journal\":{\"name\":\"HVAC&R Research\",\"volume\":\"33 1\",\"pages\":\"570 - 580\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HVAC&R Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10789669.2014.920224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HVAC&R Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10789669.2014.920224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Heat and mass transfer enhancement potential on falling film absorbers for water-LiBr mixtures via a literature review (RP-1462)
Significant process intensification (PI) of heat and mass transfer is indispensable in building compact and energy efficient absorption refrigeration systems. High potentials exist to achieve the required PI through (1) development of active heat and mass transfer enhancement techniques and (2) combining the active enhancement mechanism with proven and widely used passive enhancement techniques in transport processes. There is limited research on the effect of active mechanisms, such as vibration, on heat and mass transfer coefficients in absorption systems with falling film horizontal-tube absorbers. In this general survey, with the aim to enlighten the path for active mechanisms development, recorded heat and mass transfer enhancements via active mechanisms were extracted from pertinent research works, and were summarized in tables suitable for evaluation and comparison. The potential for future research on enhancing heat and mass transfer in absorption chillers was identified.