{"title":"基于深度学习的港口船舶能耗预测","authors":"P. Hengjinda, J. Chen","doi":"10.36548/jeea.2021.2.005","DOIUrl":null,"url":null,"abstract":"The harbours using green ports have become a common mode of enabling the use of environment friendly energy consumption. In this paper, two major contributions are made: reduction of energy consumption in the ports by using ships; prediction of energy consumption with respect to a green port. The characteristics that will play a crucial role in energy consumption of ships are considered and a detailed analysis has been performed to predict the energy consumed by the ships. Deep learning methodologies such as, K-Nearest Regression (KNR), Linear Regression (LR), BP Network (BP), Random Forest Regression (RF) and Gradient Boosting Regression (GBR) are used to determine the different characteristics of the ships that are used while the external features of the ports are given as input. To determine the efficiency of the proposed work, k-fold cross validation is also incorporated. Based on feature importance, the crucial features of the algorithm are selected. The influence of different changing aspects on the ship's energy usage is identified, and reduction methods are implemented appropriately. According to the observed data, the most essential factors that may be utilised to estimate energy consumption of the ship are efficiency of facilities, actual weight, deadweight tonnage, and net tonnage. As the efficiency increases, there is also a significant reduction and the power consumption of the ship at the rate of 8% and 32% in port and berth respectively.","PeriodicalId":11075,"journal":{"name":"Day 1 Mon, June 28, 2021","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Energy Consumption by Ships at the port using Deep Learning\",\"authors\":\"P. Hengjinda, J. Chen\",\"doi\":\"10.36548/jeea.2021.2.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The harbours using green ports have become a common mode of enabling the use of environment friendly energy consumption. In this paper, two major contributions are made: reduction of energy consumption in the ports by using ships; prediction of energy consumption with respect to a green port. The characteristics that will play a crucial role in energy consumption of ships are considered and a detailed analysis has been performed to predict the energy consumed by the ships. Deep learning methodologies such as, K-Nearest Regression (KNR), Linear Regression (LR), BP Network (BP), Random Forest Regression (RF) and Gradient Boosting Regression (GBR) are used to determine the different characteristics of the ships that are used while the external features of the ports are given as input. To determine the efficiency of the proposed work, k-fold cross validation is also incorporated. Based on feature importance, the crucial features of the algorithm are selected. The influence of different changing aspects on the ship's energy usage is identified, and reduction methods are implemented appropriately. According to the observed data, the most essential factors that may be utilised to estimate energy consumption of the ship are efficiency of facilities, actual weight, deadweight tonnage, and net tonnage. As the efficiency increases, there is also a significant reduction and the power consumption of the ship at the rate of 8% and 32% in port and berth respectively.\",\"PeriodicalId\":11075,\"journal\":{\"name\":\"Day 1 Mon, June 28, 2021\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Mon, June 28, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36548/jeea.2021.2.005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, June 28, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36548/jeea.2021.2.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prediction of Energy Consumption by Ships at the port using Deep Learning
The harbours using green ports have become a common mode of enabling the use of environment friendly energy consumption. In this paper, two major contributions are made: reduction of energy consumption in the ports by using ships; prediction of energy consumption with respect to a green port. The characteristics that will play a crucial role in energy consumption of ships are considered and a detailed analysis has been performed to predict the energy consumed by the ships. Deep learning methodologies such as, K-Nearest Regression (KNR), Linear Regression (LR), BP Network (BP), Random Forest Regression (RF) and Gradient Boosting Regression (GBR) are used to determine the different characteristics of the ships that are used while the external features of the ports are given as input. To determine the efficiency of the proposed work, k-fold cross validation is also incorporated. Based on feature importance, the crucial features of the algorithm are selected. The influence of different changing aspects on the ship's energy usage is identified, and reduction methods are implemented appropriately. According to the observed data, the most essential factors that may be utilised to estimate energy consumption of the ship are efficiency of facilities, actual weight, deadweight tonnage, and net tonnage. As the efficiency increases, there is also a significant reduction and the power consumption of the ship at the rate of 8% and 32% in port and berth respectively.