Matteo Lissandrini, D. Mottin, Themis Palpanas, Yannis Velegrakis
{"title":"知识图探索的图查询建议","authors":"Matteo Lissandrini, D. Mottin, Themis Palpanas, Yannis Velegrakis","doi":"10.1145/3366423.3380005","DOIUrl":null,"url":null,"abstract":"We consider the task of exploratory search through graph queries on knowledge graphs. We propose to assist the user by expanding the query with intuitive suggestions to provide a more informative (full) query that can retrieve more detailed and relevant answers. To achieve this result, we propose a model that can bridge graph search paradigms with well-established techniques for information-retrieval. Our approach does not require any additional knowledge from the user and builds on principled language modelling approaches. We empirically show the effectiveness and efficiency of our approach on a large knowledge graph and how our suggestions are able to help build more complete and informative queries.","PeriodicalId":20754,"journal":{"name":"Proceedings of The Web Conference 2020","volume":"114 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Graph-Query Suggestions for Knowledge Graph Exploration\",\"authors\":\"Matteo Lissandrini, D. Mottin, Themis Palpanas, Yannis Velegrakis\",\"doi\":\"10.1145/3366423.3380005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the task of exploratory search through graph queries on knowledge graphs. We propose to assist the user by expanding the query with intuitive suggestions to provide a more informative (full) query that can retrieve more detailed and relevant answers. To achieve this result, we propose a model that can bridge graph search paradigms with well-established techniques for information-retrieval. Our approach does not require any additional knowledge from the user and builds on principled language modelling approaches. We empirically show the effectiveness and efficiency of our approach on a large knowledge graph and how our suggestions are able to help build more complete and informative queries.\",\"PeriodicalId\":20754,\"journal\":{\"name\":\"Proceedings of The Web Conference 2020\",\"volume\":\"114 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of The Web Conference 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3366423.3380005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The Web Conference 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3366423.3380005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Graph-Query Suggestions for Knowledge Graph Exploration
We consider the task of exploratory search through graph queries on knowledge graphs. We propose to assist the user by expanding the query with intuitive suggestions to provide a more informative (full) query that can retrieve more detailed and relevant answers. To achieve this result, we propose a model that can bridge graph search paradigms with well-established techniques for information-retrieval. Our approach does not require any additional knowledge from the user and builds on principled language modelling approaches. We empirically show the effectiveness and efficiency of our approach on a large knowledge graph and how our suggestions are able to help build more complete and informative queries.