太阳能制氢的光催化水分解:基本原理和最新进展

IF 2.5 2区 化学 Q3 CHEMISTRY, PHYSICAL International Reviews in Physical Chemistry Pub Date : 2016-01-02 DOI:10.1080/0144235X.2015.1127027
Lan Yuan, Chuang Han, Min‐Quan Yang, Yi‐Jun Xu
{"title":"太阳能制氢的光催化水分解:基本原理和最新进展","authors":"Lan Yuan, Chuang Han, Min‐Quan Yang, Yi‐Jun Xu","doi":"10.1080/0144235X.2015.1127027","DOIUrl":null,"url":null,"abstract":"The expected depletion of fossil fuel reserves and its serious environmental impact have emphasised the issue of sustainable development of the human society. Solar hydrogen by photocatalytic water splitting is a promising alternative to conventional fossil fuels, which is of great potential to relieve the energy and environmental issues and bring an energy revolution in a clean and sustainable manner. This review is going to make a brief introduction of the basic principles of photocatalytic water splitting and the concept of different kinds of water splitting systems. Various engineering strategies for searching higher efficiency of water splitting based on the photocatalytic processes, including light harvesting, charge carriers separation and co-catalysts loading, have been outlined and discussed with selected typical examples on some elaborately designed semiconductor-based photocatalytic systems. Moreover, recent impressive progresses and advancements for photocatalytic water splitting with some promising materials are presented. Finally, this review is concluded with a summary and perspective in this hot area of research.","PeriodicalId":54932,"journal":{"name":"International Reviews in Physical Chemistry","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2016-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"211","resultStr":"{\"title\":\"Photocatalytic water splitting for solar hydrogen generation: fundamentals and recent advancements\",\"authors\":\"Lan Yuan, Chuang Han, Min‐Quan Yang, Yi‐Jun Xu\",\"doi\":\"10.1080/0144235X.2015.1127027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The expected depletion of fossil fuel reserves and its serious environmental impact have emphasised the issue of sustainable development of the human society. Solar hydrogen by photocatalytic water splitting is a promising alternative to conventional fossil fuels, which is of great potential to relieve the energy and environmental issues and bring an energy revolution in a clean and sustainable manner. This review is going to make a brief introduction of the basic principles of photocatalytic water splitting and the concept of different kinds of water splitting systems. Various engineering strategies for searching higher efficiency of water splitting based on the photocatalytic processes, including light harvesting, charge carriers separation and co-catalysts loading, have been outlined and discussed with selected typical examples on some elaborately designed semiconductor-based photocatalytic systems. Moreover, recent impressive progresses and advancements for photocatalytic water splitting with some promising materials are presented. Finally, this review is concluded with a summary and perspective in this hot area of research.\",\"PeriodicalId\":54932,\"journal\":{\"name\":\"International Reviews in Physical Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2016-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"211\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Reviews in Physical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/0144235X.2015.1127027\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Reviews in Physical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/0144235X.2015.1127027","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 211

摘要

化石燃料储量的预期枯竭及其对环境的严重影响凸显了人类社会可持续发展的问题。光催化水分解太阳能制氢技术是一种很有前途的替代传统化石燃料的方法,在缓解能源和环境问题,引发清洁和可持续的能源革命方面具有很大的潜力。本文简要介绍了光催化水分解的基本原理和各种水分解系统的概念。本文概述并讨论了基于光催化过程的各种工程策略,包括光收集、载流子分离和共催化剂负载,并选择了一些精心设计的半导体光催化系统的典型实例。此外,还介绍了近年来一些有前景的材料在光催化水分解方面取得的令人印象深刻的进展和进展。最后,对这一研究热点进行了总结和展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Photocatalytic water splitting for solar hydrogen generation: fundamentals and recent advancements
The expected depletion of fossil fuel reserves and its serious environmental impact have emphasised the issue of sustainable development of the human society. Solar hydrogen by photocatalytic water splitting is a promising alternative to conventional fossil fuels, which is of great potential to relieve the energy and environmental issues and bring an energy revolution in a clean and sustainable manner. This review is going to make a brief introduction of the basic principles of photocatalytic water splitting and the concept of different kinds of water splitting systems. Various engineering strategies for searching higher efficiency of water splitting based on the photocatalytic processes, including light harvesting, charge carriers separation and co-catalysts loading, have been outlined and discussed with selected typical examples on some elaborately designed semiconductor-based photocatalytic systems. Moreover, recent impressive progresses and advancements for photocatalytic water splitting with some promising materials are presented. Finally, this review is concluded with a summary and perspective in this hot area of research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.20
自引率
1.60%
发文量
5
审稿时长
1 months
期刊介绍: International Reviews in Physical Chemistry publishes review articles describing frontier research areas in physical chemistry. Internationally renowned scientists describe their own research in the wider context of the field. The articles are of interest not only to specialists but also to those wishing to read general and authoritative accounts of recent developments in physical chemistry, chemical physics and theoretical chemistry. The journal appeals to research workers, lecturers and research students alike.
期刊最新文献
Theoretical studies of cycloaddition reactions involving C − C triple bonds Three-body recombination in physical chemistry Vibrational and structural dynamics of graphyne Fundamental photophysical concepts and key structural factors for the design of BODIPY-based tunable lasers Heavy Rydberg and ion-pair states: chemistry, spectroscopy and theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1