基于局部匹配的确定性人脸认证改进稀疏代码表示

Raji Kurikese, R. M. S. Kumar
{"title":"基于局部匹配的确定性人脸认证改进稀疏代码表示","authors":"Raji Kurikese, R. M. S. Kumar","doi":"10.1109/ICCICCT.2014.6993177","DOIUrl":null,"url":null,"abstract":"The new framework proposed in this paper provides an insight into the problem of face authentication (verification) in unconstrained environment. This unconventional method extracts and represents the microstructures and local features of a given face image by greedy approach and sparse code respectively. This gives a stable and discriminative local descriptor for each patch that hinge on the local patches and learned dictionary. Dictionary is learned from the local patches of each facial patch (component) selected using greedy approach and optimality check. Compared to the previous sparse representation based methods, new method is actually a fusion of local component and region approach. The proposed method outperforms the existing method and gives an accuracy of 99% which is demonstrated through extensive experiments conducted on publically available and challenging LFW dataset.","PeriodicalId":6615,"journal":{"name":"2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT)","volume":"8 1","pages":"1377-1382"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved sparse code representation using local matching for deterministic face authentication\",\"authors\":\"Raji Kurikese, R. M. S. Kumar\",\"doi\":\"10.1109/ICCICCT.2014.6993177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The new framework proposed in this paper provides an insight into the problem of face authentication (verification) in unconstrained environment. This unconventional method extracts and represents the microstructures and local features of a given face image by greedy approach and sparse code respectively. This gives a stable and discriminative local descriptor for each patch that hinge on the local patches and learned dictionary. Dictionary is learned from the local patches of each facial patch (component) selected using greedy approach and optimality check. Compared to the previous sparse representation based methods, new method is actually a fusion of local component and region approach. The proposed method outperforms the existing method and gives an accuracy of 99% which is demonstrated through extensive experiments conducted on publically available and challenging LFW dataset.\",\"PeriodicalId\":6615,\"journal\":{\"name\":\"2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT)\",\"volume\":\"8 1\",\"pages\":\"1377-1382\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCICCT.2014.6993177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCICCT.2014.6993177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出的新框架对无约束环境下的人脸认证(验证)问题提供了深入的见解。该方法采用贪婪算法和稀疏编码分别对给定人脸图像的微观结构和局部特征进行提取和表示。这为每个补丁提供了一个稳定的判别局部描述符,该描述符依赖于局部补丁和学习字典。字典是通过贪婪方法和最优性检查,从每个面部补丁(组件)的局部补丁中学习到的。与以往基于稀疏表示的方法相比,新方法实际上是局部分量和区域方法的融合。该方法优于现有方法,准确率达到99%,并通过在公开可用和具有挑战性的LFW数据集上进行的大量实验证明了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An improved sparse code representation using local matching for deterministic face authentication
The new framework proposed in this paper provides an insight into the problem of face authentication (verification) in unconstrained environment. This unconventional method extracts and represents the microstructures and local features of a given face image by greedy approach and sparse code respectively. This gives a stable and discriminative local descriptor for each patch that hinge on the local patches and learned dictionary. Dictionary is learned from the local patches of each facial patch (component) selected using greedy approach and optimality check. Compared to the previous sparse representation based methods, new method is actually a fusion of local component and region approach. The proposed method outperforms the existing method and gives an accuracy of 99% which is demonstrated through extensive experiments conducted on publically available and challenging LFW dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adept spectral filter for fading nonisotropic channel model Received signal strength index estimation using Kalman Filter for fuzzy based transmission power control in wireless sensor networks An efficient scalar multiplication algorithm for ECC in WSNs An electrochemical DNA-Prussian blue-carbon paste biosensor for the detection of ascorbic acid in pharmaceuticals Implementing One Time Password based security mechanism for securing personal health records in cloud
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1