三元电解质体系(Nicl2/Triton X-100/H2O)在T=298.15±0.1 K时平均活度系数的测量与建模

IF 1 4区 工程技术 Q4 CHEMISTRY, MULTIDISCIPLINARY Iranian Journal of Chemistry & Chemical Engineering-international English Edition Pub Date : 2021-07-05 DOI:10.30492/IJCCE.2021.141650.4449
M. Bagherinia, Sahar Yousefnia
{"title":"三元电解质体系(Nicl2/Triton X-100/H2O)在T=298.15±0.1 K时平均活度系数的测量与建模","authors":"M. Bagherinia, Sahar Yousefnia","doi":"10.30492/IJCCE.2021.141650.4449","DOIUrl":null,"url":null,"abstract":"In this work, the results relating to the thermodynamic properties for the ternary electrolyte system of (NiCl2 + Triton X-100 + water) using the potentiometric method were reported at T = 298.15 K. The electromotive force measurements were carried out on the galvanic cell without liquid junction of the type: Ni2+-ISE | NiCl2 (m), Triton X-100 (%wt.), H2O (100-%wt.) | AgCl|Ag over total ionic strengths from 0.0010 to 6.0000 mol.kg-1 for different percentage mass fraction of Triton X-100 (%wt. = 0.0, 1.0, 2.5, 5.0, 7.5 and 10.0). The mean activity coefficients of NiCl2 were determined by using potentiometric data. Then, the mean activity coefficients of NiCl2 were correlated with Pitzer ion interaction model and TCPC model. The Pitzer ion-interaction parameters (βo, β1 and C^∅) and the adjustable parameters (b and S) of TCPC model were determined by correlating of data for the series under investigated system. The Pitzer ion interaction parameters were used to calculating of thermodynamic properties such as the osmotic coefficients and the excess Gibbs energy of solution. The result showed that the Pitzer ion interaction model could be used to investigation of the system, successfully.","PeriodicalId":14572,"journal":{"name":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","volume":"6 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurement and modeling of mean activity coefficients in ternary electrolyte system (Nicl2/Triton X-100/H2O) at T=298.15 ± 0.1 K\",\"authors\":\"M. Bagherinia, Sahar Yousefnia\",\"doi\":\"10.30492/IJCCE.2021.141650.4449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, the results relating to the thermodynamic properties for the ternary electrolyte system of (NiCl2 + Triton X-100 + water) using the potentiometric method were reported at T = 298.15 K. The electromotive force measurements were carried out on the galvanic cell without liquid junction of the type: Ni2+-ISE | NiCl2 (m), Triton X-100 (%wt.), H2O (100-%wt.) | AgCl|Ag over total ionic strengths from 0.0010 to 6.0000 mol.kg-1 for different percentage mass fraction of Triton X-100 (%wt. = 0.0, 1.0, 2.5, 5.0, 7.5 and 10.0). The mean activity coefficients of NiCl2 were determined by using potentiometric data. Then, the mean activity coefficients of NiCl2 were correlated with Pitzer ion interaction model and TCPC model. The Pitzer ion-interaction parameters (βo, β1 and C^∅) and the adjustable parameters (b and S) of TCPC model were determined by correlating of data for the series under investigated system. The Pitzer ion interaction parameters were used to calculating of thermodynamic properties such as the osmotic coefficients and the excess Gibbs energy of solution. The result showed that the Pitzer ion interaction model could be used to investigation of the system, successfully.\",\"PeriodicalId\":14572,\"journal\":{\"name\":\"Iranian Journal of Chemistry & Chemical Engineering-international English Edition\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Chemistry & Chemical Engineering-international English Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.30492/IJCCE.2021.141650.4449\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.30492/IJCCE.2021.141650.4449","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文报道了在T = 298.15 K时,用电位法测定(NiCl2 + Triton X-100 +水)三元电解质体系热力学性质的结果。对Ni2+- ise | NiCl2 (m)、Triton X-100 (%wt.)、H2O (100-%wt.) | AgCl|Ag类型的无液结原电池进行了电动势测量,总离子强度在0.0010 ~ 6万mol.kg-1之间,Triton X-100 (%wt.)的质量分数不同。= 0.0, 1.0, 2.5, 5.0, 7.5和10.0)。用电位法测定了NiCl2的平均活度系数。然后,将NiCl2的平均活度系数与Pitzer离子相互作用模型和TCPC模型进行了相关性分析。通过对所研究系列系统的数据进行关联,确定了TCPC模型的Pitzer离子相互作用参数(β 0、β1、C^∅)和可调参数(b、S)。利用Pitzer离子相互作用参数计算了溶液的渗透系数和过量吉布斯能等热力学性质。结果表明,Pitzer离子相互作用模型可以成功地用于体系的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Measurement and modeling of mean activity coefficients in ternary electrolyte system (Nicl2/Triton X-100/H2O) at T=298.15 ± 0.1 K
In this work, the results relating to the thermodynamic properties for the ternary electrolyte system of (NiCl2 + Triton X-100 + water) using the potentiometric method were reported at T = 298.15 K. The electromotive force measurements were carried out on the galvanic cell without liquid junction of the type: Ni2+-ISE | NiCl2 (m), Triton X-100 (%wt.), H2O (100-%wt.) | AgCl|Ag over total ionic strengths from 0.0010 to 6.0000 mol.kg-1 for different percentage mass fraction of Triton X-100 (%wt. = 0.0, 1.0, 2.5, 5.0, 7.5 and 10.0). The mean activity coefficients of NiCl2 were determined by using potentiometric data. Then, the mean activity coefficients of NiCl2 were correlated with Pitzer ion interaction model and TCPC model. The Pitzer ion-interaction parameters (βo, β1 and C^∅) and the adjustable parameters (b and S) of TCPC model were determined by correlating of data for the series under investigated system. The Pitzer ion interaction parameters were used to calculating of thermodynamic properties such as the osmotic coefficients and the excess Gibbs energy of solution. The result showed that the Pitzer ion interaction model could be used to investigation of the system, successfully.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
22.20%
发文量
0
审稿时长
6-12 weeks
期刊介绍: The aim of the Iranian Journal of Chemistry and Chemical Engineering is to foster the growth of educational, scientific and Industrial Research activities among chemists and chemical engineers and to provide a medium for mutual communication and relations between Iranian academia and the industry on the one hand, and the world the scientific community on the other.
期刊最新文献
Thermodynamic Modeling the Solubility of CO2 in the Binary and Three-Component Aqua System of Methyldiethanolamine (MDEA) Using the N-Wilson-NRF The high performance of diethylhydroxylamine in comparison with hydrazine for the removal of dissolved oxygen from boilers of power plant Acoustofluidic separation of microparticles: a numerical study Morpho-structural characterization and electrophoretic deposition of xonotlite obtained by a hydrothermal method A 2E Analysis and Optimization of a Hybrid Solar Humidification-Dehumidification Water Desalination System and Solar Water Heater
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1