双稳态微分流阀CFD建模与评价

L. MarcoAGuevara, C. LuisCBelalcazar
{"title":"双稳态微分流阀CFD建模与评价","authors":"L. MarcoAGuevara, C. LuisCBelalcazar","doi":"10.29047/01225383.94","DOIUrl":null,"url":null,"abstract":"Micro-diverter valves are innovative and efficient devices used to generate microbubbles that can significantly enhance process efficiency in industry. Micro-diverter valves have been experimentally tested and modeled using CFD in previous works. However, a detailed CFD modeling evaluation of these valves has not been performed employing detailed turbulence modeling at transient and steady state. This article presents a three-dimensional CFD simulation and performance evaluation of a bi-stable diverted valve for microbubble generation. In the model, transient and steady state approaches were used to quantify the behavior in the valve. The κ – ε standard and κ – ε RNG turbulence models were used and compared. Different mesh configurations, mesh generation methods, and both turbulence models were evaluated to find the best set-up to simulate this valve. A brief analysis of the time-step size using the Courant number approach was also performed. Operation conditions at low Reynolds (3800) and high frequency (200 Hz) were used to assess possible industrial applications, thus setting the base for further studies. The results of this work show that at low Reynolds numbers and high frequencies, the valve is able to divert the fluid and thus it may have wider industrial applications.","PeriodicalId":10745,"journal":{"name":"CT&F - Ciencia, Tecnología y Futuro","volume":"470 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"CFD Modeling and evaluation of a bi-stable micro-diverter valve\",\"authors\":\"L. MarcoAGuevara, C. LuisCBelalcazar\",\"doi\":\"10.29047/01225383.94\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Micro-diverter valves are innovative and efficient devices used to generate microbubbles that can significantly enhance process efficiency in industry. Micro-diverter valves have been experimentally tested and modeled using CFD in previous works. However, a detailed CFD modeling evaluation of these valves has not been performed employing detailed turbulence modeling at transient and steady state. This article presents a three-dimensional CFD simulation and performance evaluation of a bi-stable diverted valve for microbubble generation. In the model, transient and steady state approaches were used to quantify the behavior in the valve. The κ – ε standard and κ – ε RNG turbulence models were used and compared. Different mesh configurations, mesh generation methods, and both turbulence models were evaluated to find the best set-up to simulate this valve. A brief analysis of the time-step size using the Courant number approach was also performed. Operation conditions at low Reynolds (3800) and high frequency (200 Hz) were used to assess possible industrial applications, thus setting the base for further studies. The results of this work show that at low Reynolds numbers and high frequencies, the valve is able to divert the fluid and thus it may have wider industrial applications.\",\"PeriodicalId\":10745,\"journal\":{\"name\":\"CT&F - Ciencia, Tecnología y Futuro\",\"volume\":\"470 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CT&F - Ciencia, Tecnología y Futuro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29047/01225383.94\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CT&F - Ciencia, Tecnología y Futuro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29047/01225383.94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

微分流阀是一种创新和高效的装置,用于产生微气泡,可以显着提高工业过程效率。在以前的工作中,已经对微分流阀进行了实验测试和CFD建模。然而,尚未对这些阀门进行详细的CFD建模评估,并没有在瞬态和稳态下进行详细的湍流建模。本文介绍了一种用于微泡产生的双稳态分流阀的三维CFD模拟和性能评价。在该模型中,采用瞬态和稳态方法来量化阀门的行为。采用κ - ε标准湍流模型和κ - ε RNG湍流模型进行比较。评估了不同的网格配置、网格生成方法和两种湍流模型,以找到模拟该阀的最佳设置。使用Courant数方法对时间步长进行了简要分析。使用低雷诺数(3800)和高频率(200 Hz)的操作条件来评估可能的工业应用,从而为进一步研究奠定基础。这项工作的结果表明,在低雷诺数和高频率下,该阀能够转移流体,因此它可能具有更广泛的工业应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CFD Modeling and evaluation of a bi-stable micro-diverter valve
Micro-diverter valves are innovative and efficient devices used to generate microbubbles that can significantly enhance process efficiency in industry. Micro-diverter valves have been experimentally tested and modeled using CFD in previous works. However, a detailed CFD modeling evaluation of these valves has not been performed employing detailed turbulence modeling at transient and steady state. This article presents a three-dimensional CFD simulation and performance evaluation of a bi-stable diverted valve for microbubble generation. In the model, transient and steady state approaches were used to quantify the behavior in the valve. The κ – ε standard and κ – ε RNG turbulence models were used and compared. Different mesh configurations, mesh generation methods, and both turbulence models were evaluated to find the best set-up to simulate this valve. A brief analysis of the time-step size using the Courant number approach was also performed. Operation conditions at low Reynolds (3800) and high frequency (200 Hz) were used to assess possible industrial applications, thus setting the base for further studies. The results of this work show that at low Reynolds numbers and high frequencies, the valve is able to divert the fluid and thus it may have wider industrial applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Critical factors for unconventional hydrocarbon resources development Mass balance of Neogene sediments in the Colombia basin relationship with the evolution of the Magdalena and Cauca River basins Suitability assessment for electricity generation through renewable sources: towards sustainable energy production Bulk rheology characterization of biopolymer solutions and discussions of their potential for enhanced oil recovery applications Comparative analysis of matching pursuit algorithms for Kirchhoff migration on compressed data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1