将计算模型从研究工具转化为软件产品:以弧焊研究为例

IF 1.5 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING IET Software Pub Date : 2023-05-08 DOI:10.3390/software2020012
A. Murphy, David G. Thomas, Fiona F. Chen, J. Xiang, Yuqing Feng
{"title":"将计算模型从研究工具转化为软件产品:以弧焊研究为例","authors":"A. Murphy, David G. Thomas, Fiona F. Chen, J. Xiang, Yuqing Feng","doi":"10.3390/software2020012","DOIUrl":null,"url":null,"abstract":"Arc welding is a thermal plasma process widely used to join metals. An arc welding model that couples fluid dynamic and electromagnetic equations was initially developed as a research tool. Subsequently, it was applied to improve and optimise industrial implementations of arc welding. The model includes the arc plasma, the electrode, and the workpiece in the computational domain. It incorporates several features to ensure numerical accuracy and reduce computation time and memory requirements. The arc welding code has been refactored into commercial-grade Windows software, ArcWeld, to address the needs of industrial customers. The methods used to develop ArcWeld and its extension to new arc welding regimes, which used the Workspace workflow platform, are presented. The transformation of the model to an integrated software application means that non-experts can now run the code after only elementary training. The user can easily visualise the results, improving the ability to analyse and generate insights into the arc welding process being modelled. These changes mean that scientific progress is accelerated, and that the software can be used in industry and assist welders’ training. The methods used are transferrable to many other research codes.","PeriodicalId":50378,"journal":{"name":"IET Software","volume":"32 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transforming a Computational Model from a Research Tool to a Software Product: A Case Study from Arc Welding Research\",\"authors\":\"A. Murphy, David G. Thomas, Fiona F. Chen, J. Xiang, Yuqing Feng\",\"doi\":\"10.3390/software2020012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Arc welding is a thermal plasma process widely used to join metals. An arc welding model that couples fluid dynamic and electromagnetic equations was initially developed as a research tool. Subsequently, it was applied to improve and optimise industrial implementations of arc welding. The model includes the arc plasma, the electrode, and the workpiece in the computational domain. It incorporates several features to ensure numerical accuracy and reduce computation time and memory requirements. The arc welding code has been refactored into commercial-grade Windows software, ArcWeld, to address the needs of industrial customers. The methods used to develop ArcWeld and its extension to new arc welding regimes, which used the Workspace workflow platform, are presented. The transformation of the model to an integrated software application means that non-experts can now run the code after only elementary training. The user can easily visualise the results, improving the ability to analyse and generate insights into the arc welding process being modelled. These changes mean that scientific progress is accelerated, and that the software can be used in industry and assist welders’ training. The methods used are transferrable to many other research codes.\",\"PeriodicalId\":50378,\"journal\":{\"name\":\"IET Software\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3390/software2020012\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3390/software2020012","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

电弧焊是一种广泛应用于金属连接的热等离子体工艺。作为一种研究工具,初步建立了一种流体动力学方程和电磁方程耦合的弧焊模型。随后,将其应用于改进和优化弧焊的工业实施。该模型在计算域中包括电弧等离子体、电极和工件。它结合了几个功能,以确保数值精度,减少计算时间和内存要求。弧焊代码已被重构为商业级Windows软件ArcWeld,以满足工业客户的需求。介绍了使用Workspace工作流平台开发ArcWeld的方法,并将其扩展到新的弧焊体系。将模型转换为集成的软件应用程序意味着非专业人员现在只需经过基本培训就可以运行代码。用户可以很容易地将结果可视化,从而提高分析和生成对电弧焊接过程建模的见解的能力。这些变化意味着科学进步的加速,该软件可以用于工业和辅助焊工的培训。所使用的方法可转移到许多其他研究代码中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transforming a Computational Model from a Research Tool to a Software Product: A Case Study from Arc Welding Research
Arc welding is a thermal plasma process widely used to join metals. An arc welding model that couples fluid dynamic and electromagnetic equations was initially developed as a research tool. Subsequently, it was applied to improve and optimise industrial implementations of arc welding. The model includes the arc plasma, the electrode, and the workpiece in the computational domain. It incorporates several features to ensure numerical accuracy and reduce computation time and memory requirements. The arc welding code has been refactored into commercial-grade Windows software, ArcWeld, to address the needs of industrial customers. The methods used to develop ArcWeld and its extension to new arc welding regimes, which used the Workspace workflow platform, are presented. The transformation of the model to an integrated software application means that non-experts can now run the code after only elementary training. The user can easily visualise the results, improving the ability to analyse and generate insights into the arc welding process being modelled. These changes mean that scientific progress is accelerated, and that the software can be used in industry and assist welders’ training. The methods used are transferrable to many other research codes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Software
IET Software 工程技术-计算机:软件工程
CiteScore
4.20
自引率
0.00%
发文量
27
审稿时长
9 months
期刊介绍: IET Software publishes papers on all aspects of the software lifecycle, including design, development, implementation and maintenance. The focus of the journal is on the methods used to develop and maintain software, and their practical application. Authors are especially encouraged to submit papers on the following topics, although papers on all aspects of software engineering are welcome: Software and systems requirements engineering Formal methods, design methods, practice and experience Software architecture, aspect and object orientation, reuse and re-engineering Testing, verification and validation techniques Software dependability and measurement Human systems engineering and human-computer interaction Knowledge engineering; expert and knowledge-based systems, intelligent agents Information systems engineering Application of software engineering in industry and commerce Software engineering technology transfer Management of software development Theoretical aspects of software development Machine learning Big data and big code Cloud computing Current Special Issue. Call for papers: Knowledge Discovery for Software Development - https://digital-library.theiet.org/files/IET_SEN_CFP_KDSD.pdf Big Data Analytics for Sustainable Software Development - https://digital-library.theiet.org/files/IET_SEN_CFP_BDASSD.pdf
期刊最新文献
Software Defect Prediction Method Based on Clustering Ensemble Learning ConCPDP: A Cross-Project Defect Prediction Method Integrating Contrastive Pretraining and Category Boundary Adjustment Breaking the Blockchain Trilemma: A Comprehensive Consensus Mechanism for Ensuring Security, Scalability, and Decentralization IC-GraF: An Improved Clustering with Graph-Embedding-Based Features for Software Defect Prediction IAPCP: An Effective Cross-Project Defect Prediction Model via Intra-Domain Alignment and Programming-Based Distribution Adaptation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1