利用卷积神经网络方法开发脑膜瘤检测系统

IF 0.7 Q4 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH International Journal of Migration Health and Social Care Pub Date : 2023-08-26 DOI:10.58860/ijsh.v2i8.76
Mochamad Bayu Andika, Choirul Anwar, Siti Masrochah, Tri Asih Budiati, I. Gde, Anom A. Yudha
{"title":"利用卷积神经网络方法开发脑膜瘤检测系统","authors":"Mochamad Bayu Andika, Choirul Anwar, Siti Masrochah, Tri Asih Budiati, I. Gde, Anom A. Yudha","doi":"10.58860/ijsh.v2i8.76","DOIUrl":null,"url":null,"abstract":"This research aims to design a brain tumor detection tool using the MobileNet architecture Convolutional Neural Network method. The CNN method with MobileNet can effectively detect brain tumors via CT-Scan, with more accurate diagnostic results and reduced errors. This method also speeds up diagnostic time and can help remote areas. The MobileNet application is standalone but requires a web server; it can detect meningioma and glioma brain tumors. The training data includes contrast and non-contrast images, with an accuracy level of MobileNet version 3 reaching 100% compared to the Anatomical Pathology examination. Evaluation of the effectiveness of the CNN method provides an understanding of the strengths and weaknesses of this method. The CNN method can potentially improve diagnostic accuracy, time efficiency, and the results of detecting meningioma brain tumors. Analysis of differences in diagnoses before and after using the CNN method provides essential information about the benefits and advantages of its use in clinical practice, including improvements in detection accuracy, sensitivity, and specificity in identifying meningioma brain tumors with consistent and reliable results.","PeriodicalId":44967,"journal":{"name":"International Journal of Migration Health and Social Care","volume":"192 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Brain Tumor Meningioma Detection System Development Using Convolutional Neural Network Method Mobilenet Architecture\",\"authors\":\"Mochamad Bayu Andika, Choirul Anwar, Siti Masrochah, Tri Asih Budiati, I. Gde, Anom A. Yudha\",\"doi\":\"10.58860/ijsh.v2i8.76\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research aims to design a brain tumor detection tool using the MobileNet architecture Convolutional Neural Network method. The CNN method with MobileNet can effectively detect brain tumors via CT-Scan, with more accurate diagnostic results and reduced errors. This method also speeds up diagnostic time and can help remote areas. The MobileNet application is standalone but requires a web server; it can detect meningioma and glioma brain tumors. The training data includes contrast and non-contrast images, with an accuracy level of MobileNet version 3 reaching 100% compared to the Anatomical Pathology examination. Evaluation of the effectiveness of the CNN method provides an understanding of the strengths and weaknesses of this method. The CNN method can potentially improve diagnostic accuracy, time efficiency, and the results of detecting meningioma brain tumors. Analysis of differences in diagnoses before and after using the CNN method provides essential information about the benefits and advantages of its use in clinical practice, including improvements in detection accuracy, sensitivity, and specificity in identifying meningioma brain tumors with consistent and reliable results.\",\"PeriodicalId\":44967,\"journal\":{\"name\":\"International Journal of Migration Health and Social Care\",\"volume\":\"192 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Migration Health and Social Care\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.58860/ijsh.v2i8.76\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Migration Health and Social Care","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58860/ijsh.v2i8.76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在利用MobileNet架构的卷积神经网络方法设计一种脑肿瘤检测工具。结合MobileNet的CNN方法可以通过ct扫描有效检测脑肿瘤,诊断结果更准确,误差更小。这种方法也加快了诊断时间,可以帮助偏远地区。MobileNet应用程序是独立的,但需要一个web服务器;它可以检测脑膜瘤和神经胶质瘤。训练数据包括对比度和非对比度图像,与解剖病理学检查相比,MobileNet版本3的准确率达到100%。通过对CNN方法有效性的评估,可以了解该方法的优缺点。CNN方法可以潜在地提高诊断准确性、时间效率和检测脑膜瘤的结果。分析使用CNN方法前后的诊断差异,提供了在临床实践中使用CNN方法的好处和优势的基本信息,包括在识别脑膜瘤肿瘤的检测准确性、灵敏度和特异性方面的提高,结果一致可靠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of Brain Tumor Meningioma Detection System Development Using Convolutional Neural Network Method Mobilenet Architecture
This research aims to design a brain tumor detection tool using the MobileNet architecture Convolutional Neural Network method. The CNN method with MobileNet can effectively detect brain tumors via CT-Scan, with more accurate diagnostic results and reduced errors. This method also speeds up diagnostic time and can help remote areas. The MobileNet application is standalone but requires a web server; it can detect meningioma and glioma brain tumors. The training data includes contrast and non-contrast images, with an accuracy level of MobileNet version 3 reaching 100% compared to the Anatomical Pathology examination. Evaluation of the effectiveness of the CNN method provides an understanding of the strengths and weaknesses of this method. The CNN method can potentially improve diagnostic accuracy, time efficiency, and the results of detecting meningioma brain tumors. Analysis of differences in diagnoses before and after using the CNN method provides essential information about the benefits and advantages of its use in clinical practice, including improvements in detection accuracy, sensitivity, and specificity in identifying meningioma brain tumors with consistent and reliable results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Migration Health and Social Care
International Journal of Migration Health and Social Care PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH-
CiteScore
1.30
自引率
0.00%
发文量
21
期刊最新文献
Health literacy of forcibly displaced (migrant) women during the COVID-19 pandemic: a grounded theory study The Relationship Between the Severity of Acne Vulgaris and the Quality of Life of Prima Indonesia University Medical Faculty Students The (big) role of family constellations in return migration and transnationalism The Role of Telemedicine Technology in Stroke Patient Care Implementation of the Radiation Hazard Allowance Policy for Radiation Workers in Health Service Facilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1