B. Scarino, D. Doelling, C. Haney, R. Bhatt, A. Gopalan
{"title":"Osiris-Rex-Navcam2 Dscovr-Epic成像仪波段差校正的极端情况","authors":"B. Scarino, D. Doelling, C. Haney, R. Bhatt, A. Gopalan","doi":"10.1109/IGARSS.2019.8900496","DOIUrl":null,"url":null,"abstract":"Earth-viewed images acquired during a recent asteroid-intercept mission present a unique opportunity for radiometric calibration of visible imagers onboard a space exploration probe. Measurements from the CERES-consistent DSCOVR-EPIC imager act as a reference in providing spatially, temporally, and angularly matched radiance values for deriving OSIRIS-REx-NavCam sensor calibration gains. The calibration is accomplished using an optimized all-sky tropical ocean ray-matching technique, which employs complex pixel remapping, navigation correction, and angular geometry consideration. Of critical consideration in this specific inter-calibration event is the extreme difference in spectral response function (SRF) width between the NavCam and EPIC imagers, which could cause a rather large bias. The NASA-LaRC SCIAMACHY-based online spectral band adjustment factor (SBAF) calculation tool provides an empirical solution to such potential spectral-difference-induced biases through a high-spectral-resolution hyperspectral convolution approach. The adjustments produced from this tool can effectively reduce the calibration gain bias of NavCam2 by nearly 6%, thereby adjusting the NavCam2 sensor to within 3.2% of its pre-launch calibration. These results highlight the capability of the SBAF tool to account for exceptionally disparate SRFs.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"10 1","pages":"8996-8998"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extreme Case of Spectral Band Difference Correction Between the Osiris-Rex-Navcam2 Dscovr-Epic Imagers\",\"authors\":\"B. Scarino, D. Doelling, C. Haney, R. Bhatt, A. Gopalan\",\"doi\":\"10.1109/IGARSS.2019.8900496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Earth-viewed images acquired during a recent asteroid-intercept mission present a unique opportunity for radiometric calibration of visible imagers onboard a space exploration probe. Measurements from the CERES-consistent DSCOVR-EPIC imager act as a reference in providing spatially, temporally, and angularly matched radiance values for deriving OSIRIS-REx-NavCam sensor calibration gains. The calibration is accomplished using an optimized all-sky tropical ocean ray-matching technique, which employs complex pixel remapping, navigation correction, and angular geometry consideration. Of critical consideration in this specific inter-calibration event is the extreme difference in spectral response function (SRF) width between the NavCam and EPIC imagers, which could cause a rather large bias. The NASA-LaRC SCIAMACHY-based online spectral band adjustment factor (SBAF) calculation tool provides an empirical solution to such potential spectral-difference-induced biases through a high-spectral-resolution hyperspectral convolution approach. The adjustments produced from this tool can effectively reduce the calibration gain bias of NavCam2 by nearly 6%, thereby adjusting the NavCam2 sensor to within 3.2% of its pre-launch calibration. These results highlight the capability of the SBAF tool to account for exceptionally disparate SRFs.\",\"PeriodicalId\":13262,\"journal\":{\"name\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"10 1\",\"pages\":\"8996-8998\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2019.8900496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8900496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extreme Case of Spectral Band Difference Correction Between the Osiris-Rex-Navcam2 Dscovr-Epic Imagers
Earth-viewed images acquired during a recent asteroid-intercept mission present a unique opportunity for radiometric calibration of visible imagers onboard a space exploration probe. Measurements from the CERES-consistent DSCOVR-EPIC imager act as a reference in providing spatially, temporally, and angularly matched radiance values for deriving OSIRIS-REx-NavCam sensor calibration gains. The calibration is accomplished using an optimized all-sky tropical ocean ray-matching technique, which employs complex pixel remapping, navigation correction, and angular geometry consideration. Of critical consideration in this specific inter-calibration event is the extreme difference in spectral response function (SRF) width between the NavCam and EPIC imagers, which could cause a rather large bias. The NASA-LaRC SCIAMACHY-based online spectral band adjustment factor (SBAF) calculation tool provides an empirical solution to such potential spectral-difference-induced biases through a high-spectral-resolution hyperspectral convolution approach. The adjustments produced from this tool can effectively reduce the calibration gain bias of NavCam2 by nearly 6%, thereby adjusting the NavCam2 sensor to within 3.2% of its pre-launch calibration. These results highlight the capability of the SBAF tool to account for exceptionally disparate SRFs.