{"title":"经典量子通道的斯坦引理","authors":"M. Berta, C. Hirche, Eneet Kaur, M. Wilde","doi":"10.1109/ISIT.2019.8849562","DOIUrl":null,"url":null,"abstract":"It is well known that for the discrimination of classical and quantum channels in the finite, non-asymptotic regime, adaptive strategies can give an advantage over non-adaptive strategies. However, Hayashi [IEEE Trans. Inf. Theory 55(8), 3807 (2009)] showed that in the asymptotic regime, the exponential error rate for the discrimination of classical channels is not improved in the adaptive setting. We show that, for the discrimination of classical-quantum channels, adaptive strategies do not lead to an asymptotic advantage. As our main result, this establishes Stein’s lemma for classical-quantum channels. Our proofs are based on the concept of amortized distinguishability of channels, which we analyse using entropy inequalities.","PeriodicalId":6708,"journal":{"name":"2019 IEEE International Symposium on Information Theory (ISIT)","volume":"133 1","pages":"2564-2568"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Stein’s Lemma for Classical-Quantum Channels\",\"authors\":\"M. Berta, C. Hirche, Eneet Kaur, M. Wilde\",\"doi\":\"10.1109/ISIT.2019.8849562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well known that for the discrimination of classical and quantum channels in the finite, non-asymptotic regime, adaptive strategies can give an advantage over non-adaptive strategies. However, Hayashi [IEEE Trans. Inf. Theory 55(8), 3807 (2009)] showed that in the asymptotic regime, the exponential error rate for the discrimination of classical channels is not improved in the adaptive setting. We show that, for the discrimination of classical-quantum channels, adaptive strategies do not lead to an asymptotic advantage. As our main result, this establishes Stein’s lemma for classical-quantum channels. Our proofs are based on the concept of amortized distinguishability of channels, which we analyse using entropy inequalities.\",\"PeriodicalId\":6708,\"journal\":{\"name\":\"2019 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"133 1\",\"pages\":\"2564-2568\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2019.8849562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2019.8849562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
摘要
众所周知,对于有限非渐近状态下的经典通道和量子通道的区分,自适应策略比非自适应策略具有优势。然而,Hayashi [IEEE Trans.]Inf. Theory 55(8), 3807(2009)]表明,在渐近状态下,自适应设置下经典信道判别的指数错误率没有得到改善。我们证明,对于经典量子信道的判别,自适应策略不会导致渐近优势。作为我们的主要结果,这建立了经典量子通道的斯坦引理。我们的证明是基于信道的平摊可分辨性的概念,我们用熵不等式来分析这个概念。
It is well known that for the discrimination of classical and quantum channels in the finite, non-asymptotic regime, adaptive strategies can give an advantage over non-adaptive strategies. However, Hayashi [IEEE Trans. Inf. Theory 55(8), 3807 (2009)] showed that in the asymptotic regime, the exponential error rate for the discrimination of classical channels is not improved in the adaptive setting. We show that, for the discrimination of classical-quantum channels, adaptive strategies do not lead to an asymptotic advantage. As our main result, this establishes Stein’s lemma for classical-quantum channels. Our proofs are based on the concept of amortized distinguishability of channels, which we analyse using entropy inequalities.