J. Bomanson, M. Gebser, T. Janhunen, B. Kaufmann, Torsten Schaub
{"title":"答案集编程模非环性","authors":"J. Bomanson, M. Gebser, T. Janhunen, B. Kaufmann, Torsten Schaub","doi":"10.3233/FI-2016-1398","DOIUrl":null,"url":null,"abstract":"Acyclicity constraints are prevalent in knowledge representation and, in particular, applications where acyclic data structures such as DAGs and trees play a role. Recently, such constraints have been considered in the satisfiability modulo theories (SMT) framework, and in this paper we carry out an analogous extension to the answer set programming (ASP) paradigm. The resulting formalism, ASP modulo acyclicity, offers a rich set of primitives to express constraints related with recursive structures. The implementation, obtained as an extension to the state-of-the-art answer set solver clasp, provides a unique combination of traditional unfounded set checking with acyclicity propagation.","PeriodicalId":56310,"journal":{"name":"Fundamenta Informaticae","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2015-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Answer Set Programming Modulo Acyclicity\",\"authors\":\"J. Bomanson, M. Gebser, T. Janhunen, B. Kaufmann, Torsten Schaub\",\"doi\":\"10.3233/FI-2016-1398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Acyclicity constraints are prevalent in knowledge representation and, in particular, applications where acyclic data structures such as DAGs and trees play a role. Recently, such constraints have been considered in the satisfiability modulo theories (SMT) framework, and in this paper we carry out an analogous extension to the answer set programming (ASP) paradigm. The resulting formalism, ASP modulo acyclicity, offers a rich set of primitives to express constraints related with recursive structures. The implementation, obtained as an extension to the state-of-the-art answer set solver clasp, provides a unique combination of traditional unfounded set checking with acyclicity propagation.\",\"PeriodicalId\":56310,\"journal\":{\"name\":\"Fundamenta Informaticae\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2015-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamenta Informaticae\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/FI-2016-1398\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamenta Informaticae","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/FI-2016-1398","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Acyclicity constraints are prevalent in knowledge representation and, in particular, applications where acyclic data structures such as DAGs and trees play a role. Recently, such constraints have been considered in the satisfiability modulo theories (SMT) framework, and in this paper we carry out an analogous extension to the answer set programming (ASP) paradigm. The resulting formalism, ASP modulo acyclicity, offers a rich set of primitives to express constraints related with recursive structures. The implementation, obtained as an extension to the state-of-the-art answer set solver clasp, provides a unique combination of traditional unfounded set checking with acyclicity propagation.
期刊介绍:
Fundamenta Informaticae is an international journal publishing original research results in all areas of theoretical computer science. Papers are encouraged contributing:
solutions by mathematical methods of problems emerging in computer science
solutions of mathematical problems inspired by computer science.
Topics of interest include (but are not restricted to):
theory of computing,
complexity theory,
algorithms and data structures,
computational aspects of combinatorics and graph theory,
programming language theory,
theoretical aspects of programming languages,
computer-aided verification,
computer science logic,
database theory,
logic programming,
automated deduction,
formal languages and automata theory,
concurrency and distributed computing,
cryptography and security,
theoretical issues in artificial intelligence,
machine learning,
pattern recognition,
algorithmic game theory,
bioinformatics and computational biology,
quantum computing,
probabilistic methods,
algebraic and categorical methods.