预测横断面股票收益:来自英国的证据

IF 1.4 Q3 OPERATIONS RESEARCH & MANAGEMENT SCIENCE Decision Science Letters Pub Date : 2022-01-01 DOI:10.5267/j.dsl.2022.2.004
V. H. Tran, Khoa Dang Duong, Trung Nam Nguyen, Van Ngoc Pham
{"title":"预测横断面股票收益:来自英国的证据","authors":"V. H. Tran, Khoa Dang Duong, Trung Nam Nguyen, Van Ngoc Pham","doi":"10.5267/j.dsl.2022.2.004","DOIUrl":null,"url":null,"abstract":"The study provides the forecasts of expected returns based on cross-sectional estimates from the Fama-Macbeth regressions in the United Kingdom. We collected the data of listed firms on the London Stock Exchange on the DataStream from January 1980 to December 2020. We analyze the data sample by employing three cross-sectional models' ten-year rolling estimates of Fama-Macbeth slopes. The empirical findings demonstrate that an investor can derive a composite estimate of the expected return by integrating various company-specific variables in real-time. Model 1 indicates that the expected-return estimates have a predictive slope for future monthly returns of 95.07%, with a standard error of 0.1981. Moreover, model 2 and model 3 report the predictability of returns are 77.57% and 76.94%. In short, our empirical evidence suggests that investors and stakeholders may consider using model 1 to estimate the cost of equity due to its simplicity and effective prediction capability. Our findings are consistent with trade-off theory and prior literature.","PeriodicalId":38141,"journal":{"name":"Decision Science Letters","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forecasting the cross-sectional stock returns: Evidence from the United Kingdom\",\"authors\":\"V. H. Tran, Khoa Dang Duong, Trung Nam Nguyen, Van Ngoc Pham\",\"doi\":\"10.5267/j.dsl.2022.2.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study provides the forecasts of expected returns based on cross-sectional estimates from the Fama-Macbeth regressions in the United Kingdom. We collected the data of listed firms on the London Stock Exchange on the DataStream from January 1980 to December 2020. We analyze the data sample by employing three cross-sectional models' ten-year rolling estimates of Fama-Macbeth slopes. The empirical findings demonstrate that an investor can derive a composite estimate of the expected return by integrating various company-specific variables in real-time. Model 1 indicates that the expected-return estimates have a predictive slope for future monthly returns of 95.07%, with a standard error of 0.1981. Moreover, model 2 and model 3 report the predictability of returns are 77.57% and 76.94%. In short, our empirical evidence suggests that investors and stakeholders may consider using model 1 to estimate the cost of equity due to its simplicity and effective prediction capability. Our findings are consistent with trade-off theory and prior literature.\",\"PeriodicalId\":38141,\"journal\":{\"name\":\"Decision Science Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Decision Science Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5267/j.dsl.2022.2.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Science Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5267/j.dsl.2022.2.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

该研究提供了基于英国法玛-麦克白回归的横断面估计的预期回报预测。我们收集了1980年1月至2020年12月在伦敦证券交易所上市公司的数据。我们采用三个横截面模型对Fama-Macbeth斜率的十年滚动估计来分析数据样本。实证结果表明,投资者可以通过实时整合各种公司特定变量,得出预期收益的综合估计。模型1表明,预期收益估计对未来月收益的预测斜率为95.07%,标准误差为0.1981。模型2和模型3报告的收益可预测性分别为77.57%和76.94%。总之,我们的经验证据表明,由于模型1的简单和有效的预测能力,投资者和利益相关者可能会考虑使用模型1来估计股权成本。我们的研究结果与权衡理论和先前文献一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Forecasting the cross-sectional stock returns: Evidence from the United Kingdom
The study provides the forecasts of expected returns based on cross-sectional estimates from the Fama-Macbeth regressions in the United Kingdom. We collected the data of listed firms on the London Stock Exchange on the DataStream from January 1980 to December 2020. We analyze the data sample by employing three cross-sectional models' ten-year rolling estimates of Fama-Macbeth slopes. The empirical findings demonstrate that an investor can derive a composite estimate of the expected return by integrating various company-specific variables in real-time. Model 1 indicates that the expected-return estimates have a predictive slope for future monthly returns of 95.07%, with a standard error of 0.1981. Moreover, model 2 and model 3 report the predictability of returns are 77.57% and 76.94%. In short, our empirical evidence suggests that investors and stakeholders may consider using model 1 to estimate the cost of equity due to its simplicity and effective prediction capability. Our findings are consistent with trade-off theory and prior literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Decision Science Letters
Decision Science Letters Decision Sciences-Decision Sciences (all)
CiteScore
3.40
自引率
5.30%
发文量
49
审稿时长
20 weeks
期刊最新文献
Time series prediction of novel coronavirus COVID-19 data in west Java using Gaussian processes and least median squared linear regression Determinants of woodcraft family business success Analytical evaluation of big data applications in E-commerce: A mixed method approach A two-stage SEM-artificial neural network analysis of the organizational effects of Internet of things adoption in auditing firms A novel crossover operator for genetic algorithm: Stas crossover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1