{"title":"人工光合作用的过渡金属碳化物基光催化剂","authors":"K. J. Wong, J. J. Foo, T. J. Siang, Wee‐Jun Ong","doi":"10.1002/smm2.1238","DOIUrl":null,"url":null,"abstract":"Transition metal carbides, including both MXene and non‐MXene metal carbides, have enjoyed a soaring reputation in recent years. Benefitting from their intriguing physical and chemical characteristics, they shine in multifarious research fields and currently, they have emerged as promising nanomaterials for photocatalysis in energy and environmental science. Herein, based on the recent theoretical research and experimental studies, a systematic and comprehensive review of the expeditious advances of metal carbides and their nano‐architectures in the flourishing arena of photocatalysis is presented. The fundamental mechanism involved in photocatalysis with metal carbides serving as semiconductors or cocatalysts is thoroughly discussed. Besides, we highlight the main synthetic strategies of MXene and non‐MXene metal carbides and unravel the structural properties of the as‐obtained metal carbides via different fabrication routes to establish and elucidate their intriguing role in ameliorating photocatalytic activity. Moreover, the state‐of‐the‐art advancements of metal carbides in diverse photocatalytic applications, including hydrogen evolution reaction, oxygen evolution reaction, overall water splitting, and carbon dioxide reduction reaction, are summarized. In particular, insights into the structure–activity relationship of metal carbide in photocatalysis are elucidated. Finally, this review concludes with the ongoing challenges and perspectives on the future directions of metal carbides in the realm of photocatalysis.","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":"326 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transition metal carbide‐based photocatalysts for artificial photosynthesis\",\"authors\":\"K. J. Wong, J. J. Foo, T. J. Siang, Wee‐Jun Ong\",\"doi\":\"10.1002/smm2.1238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transition metal carbides, including both MXene and non‐MXene metal carbides, have enjoyed a soaring reputation in recent years. Benefitting from their intriguing physical and chemical characteristics, they shine in multifarious research fields and currently, they have emerged as promising nanomaterials for photocatalysis in energy and environmental science. Herein, based on the recent theoretical research and experimental studies, a systematic and comprehensive review of the expeditious advances of metal carbides and their nano‐architectures in the flourishing arena of photocatalysis is presented. The fundamental mechanism involved in photocatalysis with metal carbides serving as semiconductors or cocatalysts is thoroughly discussed. Besides, we highlight the main synthetic strategies of MXene and non‐MXene metal carbides and unravel the structural properties of the as‐obtained metal carbides via different fabrication routes to establish and elucidate their intriguing role in ameliorating photocatalytic activity. Moreover, the state‐of‐the‐art advancements of metal carbides in diverse photocatalytic applications, including hydrogen evolution reaction, oxygen evolution reaction, overall water splitting, and carbon dioxide reduction reaction, are summarized. In particular, insights into the structure–activity relationship of metal carbide in photocatalysis are elucidated. Finally, this review concludes with the ongoing challenges and perspectives on the future directions of metal carbides in the realm of photocatalysis.\",\"PeriodicalId\":21794,\"journal\":{\"name\":\"SmartMat\",\"volume\":\"326 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SmartMat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/smm2.1238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SmartMat","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smm2.1238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Transition metal carbide‐based photocatalysts for artificial photosynthesis
Transition metal carbides, including both MXene and non‐MXene metal carbides, have enjoyed a soaring reputation in recent years. Benefitting from their intriguing physical and chemical characteristics, they shine in multifarious research fields and currently, they have emerged as promising nanomaterials for photocatalysis in energy and environmental science. Herein, based on the recent theoretical research and experimental studies, a systematic and comprehensive review of the expeditious advances of metal carbides and their nano‐architectures in the flourishing arena of photocatalysis is presented. The fundamental mechanism involved in photocatalysis with metal carbides serving as semiconductors or cocatalysts is thoroughly discussed. Besides, we highlight the main synthetic strategies of MXene and non‐MXene metal carbides and unravel the structural properties of the as‐obtained metal carbides via different fabrication routes to establish and elucidate their intriguing role in ameliorating photocatalytic activity. Moreover, the state‐of‐the‐art advancements of metal carbides in diverse photocatalytic applications, including hydrogen evolution reaction, oxygen evolution reaction, overall water splitting, and carbon dioxide reduction reaction, are summarized. In particular, insights into the structure–activity relationship of metal carbide in photocatalysis are elucidated. Finally, this review concludes with the ongoing challenges and perspectives on the future directions of metal carbides in the realm of photocatalysis.