Erik J Peterson, Necati Alp Müyesser, T. Verstynen, Kyle Dunovan
{"title":"结合想象力和启发式学习泛化策略","authors":"Erik J Peterson, Necati Alp Müyesser, T. Verstynen, Kyle Dunovan","doi":"10.51628/001c.13477","DOIUrl":null,"url":null,"abstract":"Deep reinforcement learning can match or exceed human performance in stable contexts, but with minor changes to the environment artificial networks, unlike humans, often cannot adapt. Humans rely on a combination of heuristics to simplify computational load and imagination to extend experiential learning to new and more challenging environments. Motivated by theories of the hierarchical organization of the human prefrontal networks, we have developed a model of hierarchical reinforcement learning that combines both heuristics and imagination into a “stumbler-strategist” network. We test performance of this network using Wythoff’s game, a gridworld environment with a known optimal strategy. We show that a heuristic labeling of each position as hot or cold, combined with imagined play, both accelerates learning and promotes transfer to novel games, while also improving model interpretability","PeriodicalId":74289,"journal":{"name":"Neurons, behavior, data analysis and theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Combining Imagination and Heuristics to Learn Strategies that Generalize\",\"authors\":\"Erik J Peterson, Necati Alp Müyesser, T. Verstynen, Kyle Dunovan\",\"doi\":\"10.51628/001c.13477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep reinforcement learning can match or exceed human performance in stable contexts, but with minor changes to the environment artificial networks, unlike humans, often cannot adapt. Humans rely on a combination of heuristics to simplify computational load and imagination to extend experiential learning to new and more challenging environments. Motivated by theories of the hierarchical organization of the human prefrontal networks, we have developed a model of hierarchical reinforcement learning that combines both heuristics and imagination into a “stumbler-strategist” network. We test performance of this network using Wythoff’s game, a gridworld environment with a known optimal strategy. We show that a heuristic labeling of each position as hot or cold, combined with imagined play, both accelerates learning and promotes transfer to novel games, while also improving model interpretability\",\"PeriodicalId\":74289,\"journal\":{\"name\":\"Neurons, behavior, data analysis and theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurons, behavior, data analysis and theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51628/001c.13477\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurons, behavior, data analysis and theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51628/001c.13477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Combining Imagination and Heuristics to Learn Strategies that Generalize
Deep reinforcement learning can match or exceed human performance in stable contexts, but with minor changes to the environment artificial networks, unlike humans, often cannot adapt. Humans rely on a combination of heuristics to simplify computational load and imagination to extend experiential learning to new and more challenging environments. Motivated by theories of the hierarchical organization of the human prefrontal networks, we have developed a model of hierarchical reinforcement learning that combines both heuristics and imagination into a “stumbler-strategist” network. We test performance of this network using Wythoff’s game, a gridworld environment with a known optimal strategy. We show that a heuristic labeling of each position as hot or cold, combined with imagined play, both accelerates learning and promotes transfer to novel games, while also improving model interpretability